Home
Class 12
MATHS
If x=a(costheta+log"tan"theta/2),y=asint...

If `x=a(costheta+log"tan"theta/2),y=asintheta,"find "dy/dx" at "theta=pi/3`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \(\frac{dy}{dx}\) given the parametric equations: \[ x = a \cos \theta + \log \tan \frac{\theta}{2} \] \[ y = a \sin \theta \] We will use the chain rule for parametric equations, which states: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} \] ### Step 1: Differentiate \(y\) with respect to \(\theta\) Given \(y = a \sin \theta\), we differentiate: \[ \frac{dy}{d\theta} = a \cos \theta \] ### Step 2: Differentiate \(x\) with respect to \(\theta\) Given \(x = a \cos \theta + \log \tan \frac{\theta}{2}\), we differentiate: \[ \frac{dx}{d\theta} = -a \sin \theta + \frac{d}{d\theta} \left(\log \tan \frac{\theta}{2}\right) \] Using the chain rule for the logarithm, we have: \[ \frac{d}{d\theta} \left(\log \tan \frac{\theta}{2}\right) = \frac{1}{\tan \frac{\theta}{2}} \cdot \frac{d}{d\theta} \left(\tan \frac{\theta}{2}\right) \] Now, differentiating \(\tan \frac{\theta}{2}\): \[ \frac{d}{d\theta} \left(\tan \frac{\theta}{2}\right) = \frac{1}{\cos^2 \frac{\theta}{2}} \cdot \frac{1}{2} = \frac{1}{2 \cos^2 \frac{\theta}{2}} \] Thus, \[ \frac{d}{d\theta} \left(\log \tan \frac{\theta}{2}\right) = \frac{1}{\tan \frac{\theta}{2}} \cdot \frac{1}{2 \cos^2 \frac{\theta}{2}} = \frac{1}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}} = \frac{1}{\sin \theta} \] So, we have: \[ \frac{dx}{d\theta} = -a \sin \theta + \frac{1}{\sin \theta} \] ### Step 3: Substitute into \(\frac{dy}{dx}\) Now we can substitute \(\frac{dy}{d\theta}\) and \(\frac{dx}{d\theta}\) into the formula for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{a \cos \theta}{-a \sin \theta + \frac{1}{\sin \theta}} \] ### Step 4: Simplify \(\frac{dy}{dx}\) We can simplify this expression: \[ \frac{dy}{dx} = \frac{a \cos \theta \cdot \sin \theta}{-a \sin^2 \theta + 1} \] ### Step 5: Evaluate at \(\theta = \frac{\pi}{3}\) Now, we substitute \(\theta = \frac{\pi}{3}\): 1. Calculate \(\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}\) and \(\cos \frac{\pi}{3} = \frac{1}{2}\). 2. Substitute into the expression: \[ \frac{dy}{dx} = \frac{a \cdot \frac{1}{2} \cdot \frac{\sqrt{3}}{2}}{-a \cdot \left(\frac{\sqrt{3}}{2}\right)^2 + 1} \] Calculating the denominator: \[ -a \cdot \frac{3}{4} + 1 = 1 - \frac{3a}{4} \] Thus, \[ \frac{dy}{dx} = \frac{\frac{a\sqrt{3}}{4}}{1 - \frac{3a}{4}} \] ### Final Result At \(\theta = \frac{\pi}{3}\), we find: \[ \frac{dy}{dx} = \tan \frac{\pi}{3} = \sqrt{3} \] So, the final answer is: \[ \frac{dy}{dx} \text{ at } \theta = \frac{\pi}{3} \text{ is } \sqrt{3}. \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(h) (SHORT ANSWER TYPE QUESTIONS)|11 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(h) (LONG ANSWER TYPE QUESTIONS (I))|20 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(g) (SHORT ANSWER TYPE QUESTIONS)|28 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

If x=2costheta-cos2theta,y=2sintheta-sin2theta,"find "dy/dx" at "theta=pi/2 .

If x=a(theta-sin theta) and,y=a(1+cos theta) find (dy)/(dx) at theta=(pi)/(3)

If x=theta-sinthetaandy=1-costheta,"find"(dy)/(dx)" at "theta=(pi)/(2)

If x=sinthetacos2theta,y=costhetasin2theta," then "((dy)/(dx))" at "theta=(pi)/(4) is

If x=a(cos theta+log tan((theta)/(2))) and y=a sin theta then find (dy)/(dx) at theta=(pi)/(3) and theta=(pi)/(4)

If x=a{costheta+logtan""(theta)/(2)}" and "y=asintheta, then (dy)/(dx) is equal to

"If "x=a sec^(3)theta and y= a tan^(3)theta , "find "(dy)/(dx)" at "theta=(pi)/(3).

If x=a(theta+sintheta) and y=a(1-costheta) , find dy//dx .