Home
Class 12
MATHS
Find dy/dx,"where "x=t^(3)+1/t andy=(t+t...

Find `dy/dx,"where "x=t^(3)+1/t andy=(t+t^(2))^(3)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) where \(x = t^3 + \frac{1}{t}\) and \(y = (t + t^2)^3\), we will use the chain rule. The steps are as follows: ### Step 1: Differentiate \(y\) with respect to \(t\) Given: \[ y = (t + t^2)^3 \] Using the chain rule: \[ \frac{dy}{dt} = 3(t + t^2)^2 \cdot \frac{d}{dt}(t + t^2) \] Now, differentiate \(t + t^2\): \[ \frac{d}{dt}(t + t^2) = 1 + 2t \] Thus, \[ \frac{dy}{dt} = 3(t + t^2)^2 \cdot (1 + 2t) \] ### Step 2: Differentiate \(x\) with respect to \(t\) Given: \[ x = t^3 + \frac{1}{t} \] Differentiate \(x\): \[ \frac{dx}{dt} = 3t^2 - \frac{1}{t^2} \] ### Step 3: Find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{3(t + t^2)^2 \cdot (1 + 2t)}{3t^2 - \frac{1}{t^2}} \] ### Step 4: Simplify the expression To simplify \(\frac{dy}{dx}\): 1. The numerator is \(3(t + t^2)^2(1 + 2t)\). 2. The denominator can be rewritten as: \[ 3t^2 - \frac{1}{t^2} = \frac{3t^4 - 1}{t^2} \] Thus: \[ \frac{dy}{dx} = \frac{3(t + t^2)^2(1 + 2t) \cdot t^2}{3t^4 - 1} \] ### Final Answer \[ \frac{dy}{dx} = \frac{3t^2(t + t^2)^2(1 + 2t)}{3t^4 - 1} \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(h) (SHORT ANSWER TYPE QUESTIONS)|11 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(h) (LONG ANSWER TYPE QUESTIONS (I))|20 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(g) (SHORT ANSWER TYPE QUESTIONS)|28 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

For a positive constant a find (dy)/(dx) , where y=a^(t+1/t) and x=(t+1/t)^a .

For a positive constant a find dy/dx,where y= a^(t+(1)/(t)), and x=(t+(1)/(t))^(a)

Find (dy)/(dx), when x=(3at)/(1+t^(2)) and y=(3at^(2))/(1+t^(2))

Find (dy)/(dx), when x=(2t)/(1+t^(2)) and y=(1-t^(2))/(1+t^(2))

Find (dy)/(dx), when x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2))

Find (dy)/(dx), when x=(e^(t)+e^(-t))/(2) and y=(e^(t)-e^(-t))/(2)

Find dy/dx , when : x=e^(t)(sint+cost)andy=e^(t)(sint-cost) .

Find (dy)/(dx),quad when x=(3at)/(a+t^(2)) and y=(3at^(2))/(1+t^(2))

Find dy/dx: x=(2at)/(1+t^2), y=(a(1-t^2))/(1+t^2)