Home
Class 12
MATHS
Find dy/dx, when : x=e^(t)(sint+cost)a...

Find `dy/dx`, when :
`x=e^(t)(sint+cost)andy=e^(t)(sint-cost)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the parametric equations \(x = e^t (\sin t + \cos t)\) and \(y = e^t (\sin t - \cos t)\), we will follow these steps: ### Step 1: Differentiate \(y\) with respect to \(t\) We start with the equation for \(y\): \[ y = e^t (\sin t - \cos t) \] Using the product rule, we differentiate \(y\): \[ \frac{dy}{dt} = \frac{d}{dt}(e^t) \cdot (\sin t - \cos t) + e^t \cdot \frac{d}{dt}(\sin t - \cos t) \] Calculating each part: 1. \(\frac{d}{dt}(e^t) = e^t\) 2. \(\frac{d}{dt}(\sin t - \cos t) = \cos t + \sin t\) So we have: \[ \frac{dy}{dt} = e^t (\sin t - \cos t) + e^t (\cos t + \sin t) \] \[ \frac{dy}{dt} = e^t ((\sin t - \cos t) + (\cos t + \sin t)) = e^t (2\sin t) \] ### Step 2: Differentiate \(x\) with respect to \(t\) Now we differentiate \(x\): \[ x = e^t (\sin t + \cos t) \] Using the product rule again: \[ \frac{dx}{dt} = \frac{d}{dt}(e^t) \cdot (\sin t + \cos t) + e^t \cdot \frac{d}{dt}(\sin t + \cos t) \] Calculating each part: 1. \(\frac{d}{dt}(e^t) = e^t\) 2. \(\frac{d}{dt}(\sin t + \cos t) = \cos t - \sin t\) So we have: \[ \frac{dx}{dt} = e^t (\sin t + \cos t) + e^t (\cos t - \sin t) \] \[ \frac{dx}{dt} = e^t ((\sin t + \cos t) + (\cos t - \sin t)) = e^t (2\cos t) \] ### Step 3: Find \(\frac{dy}{dx}\) Now we can find \(\frac{dy}{dx}\) using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{e^t (2\sin t)}{e^t (2\cos t)} \] The \(e^t\) terms cancel out: \[ \frac{dy}{dx} = \frac{2\sin t}{2\cos t} = \frac{\sin t}{\cos t} = \tan t \] ### Final Answer: \[ \frac{dy}{dx} = \tan t \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(h) (SHORT ANSWER TYPE QUESTIONS)|11 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(h) (LONG ANSWER TYPE QUESTIONS (I))|20 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(g) (SHORT ANSWER TYPE QUESTIONS)|28 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx), when y=(e^(e))^(x)

Find (dy)/(dx) , when x=a(t+sint) and y=a(1-cost).

Find (dy)/(dx) , when x=(logt+cost),y=(e^(t)+sint)

Find (dy)/(dx), when x=(e^(t)+e^(-t))/(2) and y=(e^(t)-e^(-t))/(2)

Find dy/dx when x=4t,y=4/t .

Find (dy)/(dx),quad when x=(e^(t)+e^(-t))/(2) and y(e^(t)-e^(-t))/(2)

int e^(t)(cost-sin t)dt

Find (dy)/(dx) when x=4t , y= 4/t

Find dy/dx,"where "x=t^(3)+1/t andy=(t+t^(2))^(3) .