Home
Class 12
MATHS
Differentiate the following w.r.t. x : ...

Differentiate the following w.r.t. x :
`(x)^(tanx)+(tanx)^(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = x^{\tan x} + (\tan x)^x \) with respect to \( x \), we will use the properties of logarithms and differentiation rules such as the product rule and chain rule. ### Step-by-Step Solution 1. **Define the Function:** \[ y = x^{\tan x} + (\tan x)^x \] 2. **Differentiate Each Term:** We will differentiate \( y \) term by term. Let: \[ u = x^{\tan x} \quad \text{and} \quad v = (\tan x)^x \] Then, we have: \[ \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \] 3. **Differentiate \( u = x^{\tan x} \):** To differentiate \( u \), we take the natural logarithm: \[ \ln u = \tan x \cdot \ln x \] Now, differentiate both sides: \[ \frac{1}{u} \frac{du}{dx} = \sec^2 x \cdot \ln x + \tan x \cdot \frac{1}{x} \] Rearranging gives: \[ \frac{du}{dx} = u \left( \sec^2 x \cdot \ln x + \tan x \cdot \frac{1}{x} \right) \] Substituting back for \( u \): \[ \frac{du}{dx} = x^{\tan x} \left( \sec^2 x \cdot \ln x + \tan x \cdot \frac{1}{x} \right) \] 4. **Differentiate \( v = (\tan x)^x \):** Again, take the natural logarithm: \[ \ln v = x \cdot \ln(\tan x) \] Differentiate: \[ \frac{1}{v} \frac{dv}{dx} = \ln(\tan x) + x \cdot \frac{1}{\tan x} \cdot \sec^2 x \] Rearranging gives: \[ \frac{dv}{dx} = v \left( \ln(\tan x) + x \cdot \frac{\sec^2 x}{\tan x} \right) \] Substituting back for \( v \): \[ \frac{dv}{dx} = (\tan x)^x \left( \ln(\tan x) + x \cdot \frac{\sec^2 x}{\tan x} \right) \] 5. **Combine the Derivatives:** Now we can combine the derivatives: \[ \frac{dy}{dx} = x^{\tan x} \left( \sec^2 x \cdot \ln x + \tan x \cdot \frac{1}{x} \right) + (\tan x)^x \left( \ln(\tan x) + x \cdot \frac{\sec^2 x}{\tan x} \right) \] ### Final Answer: \[ \frac{dy}{dx} = x^{\tan x} \left( \sec^2 x \cdot \ln x + \frac{\tan x}{x} \right) + (\tan x)^x \left( \ln(\tan x) + x \cdot \frac{\sec^2 x}{\tan x} \right) \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(j) (LONG ANSWER TYPE QUESTIONS (I))|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(k) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(i) (SHORT ANSWER TYPE QUESTIONS)|27 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x : (sinx)^(tanx)

Differentiate the following w.r.t. x : e^(-x)

Differentiate the following w.r.t. x : e^(x)/x

Differentiate the following w.r.t. x : (x^(x))^(x)

Differentiate the following w.r.t. x : x^(x^(2))

Differentiate the following w.r.t. x : (1/2)^(x)

Differentiate the following w.r.t. x : (logx)/e^(x)

Differentiate the following w.r.t. x : (xcosx)^(x)

Differentiate the following w.r.t. x : e^(x^(3))

Differentiate the following w.r.t. x : (sinx)^(x)

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(i) (LONG ANSWER TYPE QUESTIONS (I))
  1. Differentiate the following w.r.t. x : x^(sinx)+(sinx)^(x)

    Text Solution

    |

  2. Differentiate the following w.r.t. x : (x)^(logx)+(logx)^(x)

    Text Solution

    |

  3. Differentiate the following w.r.t. x : (x)^(tanx)+(tanx)^(x)

    Text Solution

    |

  4. Differentiate the following w.r.t. x : x^(cotx)+(cosx)^(sinx)

    Text Solution

    |

  5. Differentiate the following w.r.t. x : x^(cosx)+(cosx)^(x)

    Text Solution

    |

  6. Differentiate the following w.r.t. x : x^(cosx)+(cosx)^(sinx)

    Text Solution

    |

  7. Differentiate the following w.r.t. x : (sinx)^(cosx)+(cosx)^(sinx)

    Text Solution

    |

  8. y=(sinx)^(tanx)+(cosx)^(secx)

    Text Solution

    |

  9. Differentiate the following w.r.t. x : (logx)^(x)+(x)^(cosx)

    Text Solution

    |

  10. Differentiate the following w.r.t. x : x^(sinx)+(logx)^(x)

    Text Solution

    |

  11. Differentiate the following w.r.t. x : (x)^(sinx)+sin(x^(x))

    Text Solution

    |

  12. Differentiate the following w.r.t. x : (x)^(x)+(sinx)^(x)

    Text Solution

    |

  13. Differentiate the following w.r.t. x : (x)^(sinx)+(cosx)^(x)

    Text Solution

    |

  14. Differentiate the following w.r.t. x : x^(sinx)+(sinx)^(cosx)

    Text Solution

    |

  15. Differentiate the following w.r.t. x : (sinx)^(secx)+(tanx)^(cosx)

    Text Solution

    |

  16. Differentiate the following w.r.t. x : (tanx)^(cotx)+x^(tanx),0ltxlt...

    Text Solution

    |

  17. Differentiate the following w.r.t. x : x^(sinx)+(sinx)^(cosx)

    Text Solution

    |

  18. Differentiate the following w.r.t. x : (sinx)^(x)+sin^(-1)sqrtx

    Text Solution

    |

  19. Differentiate the following w.r.t. x:(logx)^x+x^(logx)

    Text Solution

    |

  20. Differentiate the following w.r.t. x : (logx)^(cosx)+(x^(2)+1)/(x^(2...

    Text Solution

    |