Home
Class 12
MATHS
Differentiate the following w.r.t. x : ...

Differentiate the following w.r.t. x :
`x^(cotx)+(cosx)^(sinx)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = x^{\cot x} + (\cos x)^{\sin x} \) with respect to \( x \), we will follow these steps: ### Step 1: Rewrite the function Let \( y = x^{\cot x} + (\cos x)^{\sin x} \). ### Step 2: Differentiate each term separately We will differentiate \( y \) term by term. #### For the first term \( x^{\cot x} \): Using the property \( a^b = e^{b \ln a} \), we can rewrite: \[ x^{\cot x} = e^{\cot x \ln x} \] Now, differentiate using the chain rule: \[ \frac{dy_1}{dx} = e^{\cot x \ln x} \cdot \frac{d}{dx}(\cot x \ln x) \] Using the product rule for \( \cot x \ln x \): \[ \frac{d}{dx}(\cot x \ln x) = \cot x \cdot \frac{d}{dx}(\ln x) + \ln x \cdot \frac{d}{dx}(\cot x) \] We know: \[ \frac{d}{dx}(\ln x) = \frac{1}{x}, \quad \text{and} \quad \frac{d}{dx}(\cot x) = -\csc^2 x \] Thus, \[ \frac{d}{dx}(\cot x \ln x) = \cot x \cdot \frac{1}{x} - \ln x \cdot \csc^2 x \] So, \[ \frac{dy_1}{dx} = x^{\cot x} \left( \frac{\cot x}{x} - \ln x \cdot \csc^2 x \right) \] #### For the second term \( (\cos x)^{\sin x} \): Again, using the property \( a^b = e^{b \ln a} \): \[ (\cos x)^{\sin x} = e^{\sin x \ln(\cos x)} \] Now, differentiate using the chain rule: \[ \frac{dy_2}{dx} = e^{\sin x \ln(\cos x)} \cdot \frac{d}{dx}(\sin x \ln(\cos x)) \] Using the product rule for \( \sin x \ln(\cos x) \): \[ \frac{d}{dx}(\sin x \ln(\cos x)) = \sin x \cdot \frac{d}{dx}(\ln(\cos x)) + \ln(\cos x) \cdot \frac{d}{dx}(\sin x) \] We know: \[ \frac{d}{dx}(\ln(\cos x)) = -\tan x, \quad \text{and} \quad \frac{d}{dx}(\sin x) = \cos x \] Thus, \[ \frac{d}{dx}(\sin x \ln(\cos x)) = \sin x (-\tan x) + \ln(\cos x) \cos x \] So, \[ \frac{dy_2}{dx} = (\cos x)^{\sin x} \left( -\sin x \tan x + \ln(\cos x) \cos x \right) \] ### Step 3: Combine the derivatives Now we can combine the derivatives of both terms: \[ \frac{dy}{dx} = \frac{dy_1}{dx} + \frac{dy_2}{dx} \] Substituting the expressions we derived: \[ \frac{dy}{dx} = x^{\cot x} \left( \frac{\cot x}{x} - \ln x \cdot \csc^2 x \right) + (\cos x)^{\sin x} \left( -\sin x \tan x + \ln(\cos x) \cos x \right) \] ### Final Answer Thus, the derivative of \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = x^{\cot x} \left( \frac{\cot x}{x} - \ln x \cdot \csc^2 x \right) + (\cos x)^{\sin x} \left( -\sin x \tan x + \ln(\cos x) \cos x \right) \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(j) (LONG ANSWER TYPE QUESTIONS (I))|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(k) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(i) (SHORT ANSWER TYPE QUESTIONS)|27 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x : x^(cosx)+(cosx)^(sinx)

Differentiate the following w.r.t. x : x^(cosx)+(cosx)^(x)

Differentiate the following w.r.t. x : (x)^(logx)

Differentiate the following w.r.t. x : e^(-x)

Differentiate the following w.r.t. x : (sinx)^(x)

Differentiate the following w.r.t. x : cos(x^(x))

Differentiate the following w.r.t. x : x^(x^(2))

Differentiate the following w.r.t. x : (logx)^(x)

Differentiate the following w.r.t. x : e^(mlogx)

Differentiate the following w.r.t. x : (sinx)^(cosx)+(cosx)^(sinx)

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(i) (LONG ANSWER TYPE QUESTIONS (I))
  1. Differentiate the following w.r.t. x : (x)^(logx)+(logx)^(x)

    Text Solution

    |

  2. Differentiate the following w.r.t. x : (x)^(tanx)+(tanx)^(x)

    Text Solution

    |

  3. Differentiate the following w.r.t. x : x^(cotx)+(cosx)^(sinx)

    Text Solution

    |

  4. Differentiate the following w.r.t. x : x^(cosx)+(cosx)^(x)

    Text Solution

    |

  5. Differentiate the following w.r.t. x : x^(cosx)+(cosx)^(sinx)

    Text Solution

    |

  6. Differentiate the following w.r.t. x : (sinx)^(cosx)+(cosx)^(sinx)

    Text Solution

    |

  7. y=(sinx)^(tanx)+(cosx)^(secx)

    Text Solution

    |

  8. Differentiate the following w.r.t. x : (logx)^(x)+(x)^(cosx)

    Text Solution

    |

  9. Differentiate the following w.r.t. x : x^(sinx)+(logx)^(x)

    Text Solution

    |

  10. Differentiate the following w.r.t. x : (x)^(sinx)+sin(x^(x))

    Text Solution

    |

  11. Differentiate the following w.r.t. x : (x)^(x)+(sinx)^(x)

    Text Solution

    |

  12. Differentiate the following w.r.t. x : (x)^(sinx)+(cosx)^(x)

    Text Solution

    |

  13. Differentiate the following w.r.t. x : x^(sinx)+(sinx)^(cosx)

    Text Solution

    |

  14. Differentiate the following w.r.t. x : (sinx)^(secx)+(tanx)^(cosx)

    Text Solution

    |

  15. Differentiate the following w.r.t. x : (tanx)^(cotx)+x^(tanx),0ltxlt...

    Text Solution

    |

  16. Differentiate the following w.r.t. x : x^(sinx)+(sinx)^(cosx)

    Text Solution

    |

  17. Differentiate the following w.r.t. x : (sinx)^(x)+sin^(-1)sqrtx

    Text Solution

    |

  18. Differentiate the following w.r.t. x:(logx)^x+x^(logx)

    Text Solution

    |

  19. Differentiate the following w.r.t. x : (logx)^(cosx)+(x^(2)+1)/(x^(2...

    Text Solution

    |

  20. Differentiate the following w.r.t. x:(xcosx)^x+(xsinx)^(1/x)

    Text Solution

    |