Home
Class 12
MATHS
Differentiate the following w.r.t. x : ...

Differentiate the following w.r.t. x :
`x^(cosx)+(cosx)^(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = x^{\cos x} + (\cos x)^x \) with respect to \( x \), we will follow the steps outlined below: ### Step 1: Rewrite the function in exponential form We start by rewriting the function using the property of logarithms: \[ y = x^{\cos x} + (\cos x)^x \] We can express \( x^{\cos x} \) and \( (\cos x)^x \) in terms of the exponential function: \[ y = e^{\cos x \ln x} + e^{x \ln(\cos x)} \] ### Step 2: Differentiate using the chain rule Now we will differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}(e^{\cos x \ln x}) + \frac{d}{dx}(e^{x \ln(\cos x)}) \] Using the chain rule, we have: \[ \frac{dy}{dx} = e^{\cos x \ln x} \cdot \frac{d}{dx}(\cos x \ln x) + e^{x \ln(\cos x)} \cdot \frac{d}{dx}(x \ln(\cos x)) \] ### Step 3: Differentiate the first term For the first term \( \frac{d}{dx}(\cos x \ln x) \), we apply the product rule: \[ \frac{d}{dx}(\cos x \ln x) = \frac{d}{dx}(\cos x) \cdot \ln x + \cos x \cdot \frac{d}{dx}(\ln x) \] Calculating the derivatives: \[ \frac{d}{dx}(\cos x) = -\sin x, \quad \frac{d}{dx}(\ln x) = \frac{1}{x} \] Thus, \[ \frac{d}{dx}(\cos x \ln x) = -\sin x \ln x + \frac{\cos x}{x} \] ### Step 4: Differentiate the second term Now for the second term \( \frac{d}{dx}(x \ln(\cos x)) \): Using the product rule again: \[ \frac{d}{dx}(x \ln(\cos x)) = \frac{d}{dx}(x) \cdot \ln(\cos x) + x \cdot \frac{d}{dx}(\ln(\cos x)) \] Calculating the derivatives: \[ \frac{d}{dx}(x) = 1, \quad \frac{d}{dx}(\ln(\cos x)) = -\tan x \] Thus, \[ \frac{d}{dx}(x \ln(\cos x)) = \ln(\cos x) - x \tan x \] ### Step 5: Combine results Now we can combine everything: \[ \frac{dy}{dx} = e^{\cos x \ln x} \left(-\sin x \ln x + \frac{\cos x}{x}\right) + e^{x \ln(\cos x)} \left(\ln(\cos x) - x \tan x\right) \] ### Step 6: Substitute back the original expressions Substituting back \( e^{\cos x \ln x} = x^{\cos x} \) and \( e^{x \ln(\cos x)} = (\cos x)^x \): \[ \frac{dy}{dx} = x^{\cos x} \left(-\sin x \ln x + \frac{\cos x}{x}\right) + (\cos x)^x \left(\ln(\cos x) - x \tan x\right) \] ### Final Answer Thus, the derivative of the function \( y = x^{\cos x} + (\cos x)^x \) with respect to \( x \) is: \[ \frac{dy}{dx} = x^{\cos x} \left(-\sin x \ln x + \frac{\cos x}{x}\right) + (\cos x)^x \left(\ln(\cos x) - x \tan x\right) \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(j) (LONG ANSWER TYPE QUESTIONS (I))|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(k) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(i) (SHORT ANSWER TYPE QUESTIONS)|27 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x : x^(cosx)+(cosx)^(sinx)

Differentiate the following w.r.t. x : (x)^(sinx)+(cosx)^(x)

Differentiate the following w.r.t. x : x^(cotx)+(cosx)^(sinx)

Differentiate the following w.r.t. x : (x)^(logx)

Differentiate the following w.r.t. x : e^(-x)

Differentiate the following w.r.t. x : x^(sinx+cosx)

Differentiate the following w.r.t. x : (logx)^(cosx)

Differentiate the following w.r.t. x : (sinx)^(cosx)+(cosx)^(sinx)

Differentiate the following w.r.t. x : e^(x)+2cosx

Differentiate the following w.r.t. x : cos(x^(x))

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(i) (LONG ANSWER TYPE QUESTIONS (I))
  1. Differentiate the following w.r.t. x : (x)^(tanx)+(tanx)^(x)

    Text Solution

    |

  2. Differentiate the following w.r.t. x : x^(cotx)+(cosx)^(sinx)

    Text Solution

    |

  3. Differentiate the following w.r.t. x : x^(cosx)+(cosx)^(x)

    Text Solution

    |

  4. Differentiate the following w.r.t. x : x^(cosx)+(cosx)^(sinx)

    Text Solution

    |

  5. Differentiate the following w.r.t. x : (sinx)^(cosx)+(cosx)^(sinx)

    Text Solution

    |

  6. y=(sinx)^(tanx)+(cosx)^(secx)

    Text Solution

    |

  7. Differentiate the following w.r.t. x : (logx)^(x)+(x)^(cosx)

    Text Solution

    |

  8. Differentiate the following w.r.t. x : x^(sinx)+(logx)^(x)

    Text Solution

    |

  9. Differentiate the following w.r.t. x : (x)^(sinx)+sin(x^(x))

    Text Solution

    |

  10. Differentiate the following w.r.t. x : (x)^(x)+(sinx)^(x)

    Text Solution

    |

  11. Differentiate the following w.r.t. x : (x)^(sinx)+(cosx)^(x)

    Text Solution

    |

  12. Differentiate the following w.r.t. x : x^(sinx)+(sinx)^(cosx)

    Text Solution

    |

  13. Differentiate the following w.r.t. x : (sinx)^(secx)+(tanx)^(cosx)

    Text Solution

    |

  14. Differentiate the following w.r.t. x : (tanx)^(cotx)+x^(tanx),0ltxlt...

    Text Solution

    |

  15. Differentiate the following w.r.t. x : x^(sinx)+(sinx)^(cosx)

    Text Solution

    |

  16. Differentiate the following w.r.t. x : (sinx)^(x)+sin^(-1)sqrtx

    Text Solution

    |

  17. Differentiate the following w.r.t. x:(logx)^x+x^(logx)

    Text Solution

    |

  18. Differentiate the following w.r.t. x : (logx)^(cosx)+(x^(2)+1)/(x^(2...

    Text Solution

    |

  19. Differentiate the following w.r.t. x:(xcosx)^x+(xsinx)^(1/x)

    Text Solution

    |

  20. Differentiate the following w.r.t. x : (cosx)^(x)+(sinx)^(1//x)

    Text Solution

    |