Home
Class 12
MATHS
Differentiate the following w.r.t. x : ...

Differentiate the following w.r.t. x :
`(sinx)^(cosx)+(cosx)^(sinx)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = (\sin x)^{\cos x} + (\cos x)^{\sin x} \) with respect to \( x \), we will use logarithmic differentiation and the product rule. Let's break it down step by step. ### Step 1: Define the function Let: \[ y = (\sin x)^{\cos x} + (\cos x)^{\sin x} \] ### Step 2: Differentiate each term separately We will differentiate \( u = (\sin x)^{\cos x} \) and \( v = (\cos x)^{\sin x} \) separately. ### Step 3: Differentiate \( u = (\sin x)^{\cos x} \) Taking the natural logarithm of both sides: \[ \log u = \cos x \cdot \log(\sin x) \] Now differentiate both sides with respect to \( x \): \[ \frac{1}{u} \frac{du}{dx} = \frac{d}{dx}(\cos x \cdot \log(\sin x)) \] Using the product rule on the right side: \[ \frac{d}{dx}(\cos x \cdot \log(\sin x)) = -\sin x \cdot \log(\sin x) + \cos x \cdot \frac{1}{\sin x} \cdot \cos x \] So we have: \[ \frac{1}{u} \frac{du}{dx} = -\sin x \cdot \log(\sin x) + \frac{\cos^2 x}{\sin x} \] Multiplying through by \( u \): \[ \frac{du}{dx} = u \left(-\sin x \cdot \log(\sin x) + \frac{\cos^2 x}{\sin x}\right) \] Substituting back \( u = (\sin x)^{\cos x} \): \[ \frac{du}{dx} = (\sin x)^{\cos x} \left(-\sin x \cdot \log(\sin x) + \frac{\cos^2 x}{\sin x}\right) \] ### Step 4: Differentiate \( v = (\cos x)^{\sin x} \) Taking the natural logarithm of both sides: \[ \log v = \sin x \cdot \log(\cos x) \] Now differentiate both sides with respect to \( x \): \[ \frac{1}{v} \frac{dv}{dx} = \frac{d}{dx}(\sin x \cdot \log(\cos x)) \] Using the product rule on the right side: \[ \frac{d}{dx}(\sin x \cdot \log(\cos x)) = \cos x \cdot \log(\cos x) - \sin x \cdot \frac{1}{\cos x} \cdot (-\sin x) \] So we have: \[ \frac{1}{v} \frac{dv}{dx} = \cos x \cdot \log(\cos x) + \tan x \cdot \sin x \] Multiplying through by \( v \): \[ \frac{dv}{dx} = v \left(\cos x \cdot \log(\cos x) + \tan x \cdot \sin x\right) \] Substituting back \( v = (\cos x)^{\sin x} \): \[ \frac{dv}{dx} = (\cos x)^{\sin x} \left(\cos x \cdot \log(\cos x) + \tan x \cdot \sin x\right) \] ### Step 5: Combine the derivatives Now, we can find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \] Substituting the expressions we found: \[ \frac{dy}{dx} = (\sin x)^{\cos x} \left(-\sin x \cdot \log(\sin x) + \frac{\cos^2 x}{\sin x}\right) + (\cos x)^{\sin x} \left(\cos x \cdot \log(\cos x) + \tan x \cdot \sin x\right) \] ### Final Answer Thus, the derivative of the given function is: \[ \frac{dy}{dx} = (\sin x)^{\cos x} \left(-\sin x \cdot \log(\sin x) + \frac{\cos^2 x}{\sin x}\right) + (\cos x)^{\sin x} \left(\cos x \cdot \log(\cos x) + \tan x \cdot \sin x\right) \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(j) (LONG ANSWER TYPE QUESTIONS (I))|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(k) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(i) (SHORT ANSWER TYPE QUESTIONS)|27 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x : (sinx)^(x)

Differentiate the following w.r.t. x : log(sinx)

Differentiate the following w.r.t. x : (sinx)^(sinx)

Differentiate the following w.r.t. x : e^(x)sinx

Differentiate the following w.r.t. x : (sinx)^(cos^(-1)x)

Differentiate the following w.r.t. x : x^(sinx+cosx)

Differentiate the following w.r.t. x : x^(sinx)+(sinx)^(cosx)

Differentiate the following w.r.t. x : x^(sinx)+(sinx)^(cosx)

Differentiate the following w.r.t. x : e^(x)/sinx

Differentiate the following w.r.t. x : (logx)^(cosx)

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(i) (LONG ANSWER TYPE QUESTIONS (I))
  1. Differentiate the following w.r.t. x : x^(cosx)+(cosx)^(x)

    Text Solution

    |

  2. Differentiate the following w.r.t. x : x^(cosx)+(cosx)^(sinx)

    Text Solution

    |

  3. Differentiate the following w.r.t. x : (sinx)^(cosx)+(cosx)^(sinx)

    Text Solution

    |

  4. y=(sinx)^(tanx)+(cosx)^(secx)

    Text Solution

    |

  5. Differentiate the following w.r.t. x : (logx)^(x)+(x)^(cosx)

    Text Solution

    |

  6. Differentiate the following w.r.t. x : x^(sinx)+(logx)^(x)

    Text Solution

    |

  7. Differentiate the following w.r.t. x : (x)^(sinx)+sin(x^(x))

    Text Solution

    |

  8. Differentiate the following w.r.t. x : (x)^(x)+(sinx)^(x)

    Text Solution

    |

  9. Differentiate the following w.r.t. x : (x)^(sinx)+(cosx)^(x)

    Text Solution

    |

  10. Differentiate the following w.r.t. x : x^(sinx)+(sinx)^(cosx)

    Text Solution

    |

  11. Differentiate the following w.r.t. x : (sinx)^(secx)+(tanx)^(cosx)

    Text Solution

    |

  12. Differentiate the following w.r.t. x : (tanx)^(cotx)+x^(tanx),0ltxlt...

    Text Solution

    |

  13. Differentiate the following w.r.t. x : x^(sinx)+(sinx)^(cosx)

    Text Solution

    |

  14. Differentiate the following w.r.t. x : (sinx)^(x)+sin^(-1)sqrtx

    Text Solution

    |

  15. Differentiate the following w.r.t. x:(logx)^x+x^(logx)

    Text Solution

    |

  16. Differentiate the following w.r.t. x : (logx)^(cosx)+(x^(2)+1)/(x^(2...

    Text Solution

    |

  17. Differentiate the following w.r.t. x:(xcosx)^x+(xsinx)^(1/x)

    Text Solution

    |

  18. Differentiate the following w.r.t. x : (cosx)^(x)+(sinx)^(1//x)

    Text Solution

    |

  19. y=e^(sinx)+(tanx)^(x)

    Text Solution

    |

  20. Differentiate the following w.r.t. x : x^(x)-2^(sinx)

    Text Solution

    |