Home
Class 12
MATHS
Differentiate the following w.r.t. x : ...

Differentiate the following w.r.t. x :
`(logx)^(x)+(x)^(cosx)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = (\log x)^x + x^{\cos x} \) with respect to \( x \), we will follow these steps: ### Step 1: Define the function Let: \[ y = (\log x)^x + x^{\cos x} \] ### Step 2: Differentiate the first term \( u = (\log x)^x \) To differentiate \( u = (\log x)^x \), we can use logarithmic differentiation: 1. Take the natural logarithm of both sides: \[ \log u = x \log(\log x) \] 2. Differentiate both sides with respect to \( x \): \[ \frac{1}{u} \frac{du}{dx} = \log(\log x) + x \cdot \frac{1}{\log x} \cdot \frac{1}{x} \] Simplifying gives: \[ \frac{1}{u} \frac{du}{dx} = \log(\log x) + \frac{1}{\log x} \] 3. Multiply by \( u \) to solve for \( \frac{du}{dx} \): \[ \frac{du}{dx} = u \left( \log(\log x) + \frac{1}{\log x} \right) \] Substituting back \( u = (\log x)^x \): \[ \frac{du}{dx} = (\log x)^x \left( \log(\log x) + \frac{1}{\log x} \right) \] ### Step 3: Differentiate the second term \( v = x^{\cos x} \) For \( v = x^{\cos x} \), we again use logarithmic differentiation: 1. Take the natural logarithm: \[ \log v = \cos x \log x \] 2. Differentiate both sides: \[ \frac{1}{v} \frac{dv}{dx} = -\sin x \log x + \cos x \cdot \frac{1}{x} \] 3. Multiply by \( v \): \[ \frac{dv}{dx} = v \left( -\sin x \log x + \frac{\cos x}{x} \right) \] Substituting back \( v = x^{\cos x} \): \[ \frac{dv}{dx} = x^{\cos x} \left( -\sin x \log x + \frac{\cos x}{x} \right) \] ### Step 4: Combine the derivatives Now, we can find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \] Substituting the expressions we found: \[ \frac{dy}{dx} = (\log x)^x \left( \log(\log x) + \frac{1}{\log x} \right) + x^{\cos x} \left( -\sin x \log x + \frac{\cos x}{x} \right) \] ### Final Answer Thus, the derivative of the function \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = (\log x)^x \left( \log(\log x) + \frac{1}{\log x} \right) + x^{\cos x} \left( -\sin x \log x + \frac{\cos x}{x} \right) \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(j) (LONG ANSWER TYPE QUESTIONS (I))|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(k) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(i) (SHORT ANSWER TYPE QUESTIONS)|27 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x : (logx)/e^(x)

Differentiate the following w.r.t. x : (logx)^(cosx)

Differentiate the following w.r.t. x : e^(mlogx)

Differentiate the following w.r.t. x : (x)^(logx)

Differentiate the following w.r.t. x : (xcosx)^(x)

Differentiate the following w.r.t. x : log(sinx)

Differentiate the following w.r.t. x : (1+x)^(logx)

Differentiate the following w.r.t. x : (x^(x))^(x)

Differentiate the following w.r.t. x : (sinx)^(x)

Differentiate the following w.r.t. x : 1/(logcosx)

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(i) (LONG ANSWER TYPE QUESTIONS (I))
  1. Differentiate the following w.r.t. x : (sinx)^(cosx)+(cosx)^(sinx)

    Text Solution

    |

  2. y=(sinx)^(tanx)+(cosx)^(secx)

    Text Solution

    |

  3. Differentiate the following w.r.t. x : (logx)^(x)+(x)^(cosx)

    Text Solution

    |

  4. Differentiate the following w.r.t. x : x^(sinx)+(logx)^(x)

    Text Solution

    |

  5. Differentiate the following w.r.t. x : (x)^(sinx)+sin(x^(x))

    Text Solution

    |

  6. Differentiate the following w.r.t. x : (x)^(x)+(sinx)^(x)

    Text Solution

    |

  7. Differentiate the following w.r.t. x : (x)^(sinx)+(cosx)^(x)

    Text Solution

    |

  8. Differentiate the following w.r.t. x : x^(sinx)+(sinx)^(cosx)

    Text Solution

    |

  9. Differentiate the following w.r.t. x : (sinx)^(secx)+(tanx)^(cosx)

    Text Solution

    |

  10. Differentiate the following w.r.t. x : (tanx)^(cotx)+x^(tanx),0ltxlt...

    Text Solution

    |

  11. Differentiate the following w.r.t. x : x^(sinx)+(sinx)^(cosx)

    Text Solution

    |

  12. Differentiate the following w.r.t. x : (sinx)^(x)+sin^(-1)sqrtx

    Text Solution

    |

  13. Differentiate the following w.r.t. x:(logx)^x+x^(logx)

    Text Solution

    |

  14. Differentiate the following w.r.t. x : (logx)^(cosx)+(x^(2)+1)/(x^(2...

    Text Solution

    |

  15. Differentiate the following w.r.t. x:(xcosx)^x+(xsinx)^(1/x)

    Text Solution

    |

  16. Differentiate the following w.r.t. x : (cosx)^(x)+(sinx)^(1//x)

    Text Solution

    |

  17. y=e^(sinx)+(tanx)^(x)

    Text Solution

    |

  18. Differentiate the following w.r.t. x : x^(x)-2^(sinx)

    Text Solution

    |

  19. Differentiate the functions given w.r.t. x:(x+1/x)^x+x^((1+1/x))

    Text Solution

    |

  20. Differentiate the following w.r.t. x : x^(x^(2)-3)+(x-3)^(x^(2)),"fo...

    Text Solution

    |