Home
Class 12
MATHS
Differentiate the following w.r.t. x : ...

Differentiate the following w.r.t. x :
`x^(sinx)+(logx)^(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = x^{\sin x} + (\log x)^{x} \) with respect to \( x \), we can follow these steps: ### Step 1: Rewrite the Function Let \( y = x^{\sin x} + (\log x)^{x} \). ### Step 2: Differentiate Each Term We will differentiate each term separately. 1. **Differentiate \( x^{\sin x} \)**: We can express \( x^{\sin x} \) in exponential form: \[ x^{\sin x} = e^{\sin x \cdot \log x} \] Now, using the chain rule: \[ \frac{dy_1}{dx} = e^{\sin x \cdot \log x} \cdot \frac{d}{dx}(\sin x \cdot \log x) \] Now we apply the product rule to differentiate \( \sin x \cdot \log x \): \[ \frac{d}{dx}(\sin x \cdot \log x) = \sin x \cdot \frac{d}{dx}(\log x) + \log x \cdot \frac{d}{dx}(\sin x) \] \[ = \sin x \cdot \frac{1}{x} + \log x \cdot \cos x \] Therefore, \[ \frac{dy_1}{dx} = x^{\sin x} \left( \sin x \cdot \frac{1}{x} + \log x \cdot \cos x \right) \] 2. **Differentiate \( (\log x)^{x} \)**: Similarly, we can express \( (\log x)^{x} \) in exponential form: \[ (\log x)^{x} = e^{x \cdot \log(\log x)} \] Using the chain rule again: \[ \frac{dy_2}{dx} = e^{x \cdot \log(\log x)} \cdot \frac{d}{dx}(x \cdot \log(\log x)) \] Again, applying the product rule: \[ \frac{d}{dx}(x \cdot \log(\log x)) = \log(\log x) + x \cdot \frac{1}{\log x} \cdot \frac{1}{x} = \log(\log x) + \frac{1}{\log x} \] Therefore, \[ \frac{dy_2}{dx} = (\log x)^{x} \left( \log(\log x) + \frac{1}{\log x} \right) \] ### Step 3: Combine the Results Now, we can combine the derivatives of both terms: \[ \frac{dy}{dx} = \frac{dy_1}{dx} + \frac{dy_2}{dx} \] Substituting the expressions we found: \[ \frac{dy}{dx} = x^{\sin x} \left( \sin x \cdot \frac{1}{x} + \log x \cdot \cos x \right) + (\log x)^{x} \left( \log(\log x) + \frac{1}{\log x} \right) \] ### Final Answer Thus, the derivative of the function \( y = x^{\sin x} + (\log x)^{x} \) with respect to \( x \) is: \[ \frac{dy}{dx} = x^{\sin x} \left( \frac{\sin x}{x} + \log x \cdot \cos x \right) + (\log x)^{x} \left( \log(\log x) + \frac{1}{\log x} \right) \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(j) (LONG ANSWER TYPE QUESTIONS (I))|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(k) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(i) (SHORT ANSWER TYPE QUESTIONS)|27 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x : e^(x)sinx

Differentiate the following w.r.t. x : e^(x)/sinx

Differentiate the following w.r.t. x : (sinx)^(x)

Differentiate the following w.r.t. x : log(sinx)

Differentiate the following w.r.t. x : (x)^(sinx)+(cosx)^(x)

Differentiate the following w.r.t. x : e^(-x)

Differentiate the following w.r.t. x : (x)^(logx)

Differentiate the following w.r.t. x : (logx)^(x)

Differentiate the following w.r.t. x : x^(sinx+cosx)

Differentiate the following w.r.t. x : (sinx)^(sinx)

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(i) (LONG ANSWER TYPE QUESTIONS (I))
  1. y=(sinx)^(tanx)+(cosx)^(secx)

    Text Solution

    |

  2. Differentiate the following w.r.t. x : (logx)^(x)+(x)^(cosx)

    Text Solution

    |

  3. Differentiate the following w.r.t. x : x^(sinx)+(logx)^(x)

    Text Solution

    |

  4. Differentiate the following w.r.t. x : (x)^(sinx)+sin(x^(x))

    Text Solution

    |

  5. Differentiate the following w.r.t. x : (x)^(x)+(sinx)^(x)

    Text Solution

    |

  6. Differentiate the following w.r.t. x : (x)^(sinx)+(cosx)^(x)

    Text Solution

    |

  7. Differentiate the following w.r.t. x : x^(sinx)+(sinx)^(cosx)

    Text Solution

    |

  8. Differentiate the following w.r.t. x : (sinx)^(secx)+(tanx)^(cosx)

    Text Solution

    |

  9. Differentiate the following w.r.t. x : (tanx)^(cotx)+x^(tanx),0ltxlt...

    Text Solution

    |

  10. Differentiate the following w.r.t. x : x^(sinx)+(sinx)^(cosx)

    Text Solution

    |

  11. Differentiate the following w.r.t. x : (sinx)^(x)+sin^(-1)sqrtx

    Text Solution

    |

  12. Differentiate the following w.r.t. x:(logx)^x+x^(logx)

    Text Solution

    |

  13. Differentiate the following w.r.t. x : (logx)^(cosx)+(x^(2)+1)/(x^(2...

    Text Solution

    |

  14. Differentiate the following w.r.t. x:(xcosx)^x+(xsinx)^(1/x)

    Text Solution

    |

  15. Differentiate the following w.r.t. x : (cosx)^(x)+(sinx)^(1//x)

    Text Solution

    |

  16. y=e^(sinx)+(tanx)^(x)

    Text Solution

    |

  17. Differentiate the following w.r.t. x : x^(x)-2^(sinx)

    Text Solution

    |

  18. Differentiate the functions given w.r.t. x:(x+1/x)^x+x^((1+1/x))

    Text Solution

    |

  19. Differentiate the following w.r.t. x : x^(x^(2)-3)+(x-3)^(x^(2)),"fo...

    Text Solution

    |

  20. Differentiate the following w.r.t. x : x^(x)+(sinx)^(x)

    Text Solution

    |