Home
Class 12
MATHS
Differentiate the following w.r.t. x : ...

Differentiate the following w.r.t. x :
`x^(sinx)+(sinx)^(cosx)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = x^{\sin x} + (\sin x)^{\cos x} \) with respect to \( x \), we will break it down into two parts and differentiate each part separately. ### Step 1: Differentiate \( u = x^{\sin x} \) 1. **Let \( u = x^{\sin x} \)** - Take the natural logarithm of both sides: \[ \ln u = \sin x \cdot \ln x \] 2. **Differentiate both sides with respect to \( x \)** using implicit differentiation: - Using the chain rule on the left side: \[ \frac{1}{u} \frac{du}{dx} = \frac{d}{dx}(\sin x \cdot \ln x) \] - Apply the product rule on the right side: \[ \frac{d}{dx}(\sin x \cdot \ln x) = \cos x \cdot \ln x + \sin x \cdot \frac{1}{x} \] 3. **Combine the results**: \[ \frac{1}{u} \frac{du}{dx} = \cos x \cdot \ln x + \frac{\sin x}{x} \] - Multiply both sides by \( u \): \[ \frac{du}{dx} = u \left( \cos x \cdot \ln x + \frac{\sin x}{x} \right) \] - Substitute back \( u = x^{\sin x} \): \[ \frac{du}{dx} = x^{\sin x} \left( \cos x \cdot \ln x + \frac{\sin x}{x} \right) \] ### Step 2: Differentiate \( v = (\sin x)^{\cos x} \) 1. **Let \( v = (\sin x)^{\cos x} \)** - Take the natural logarithm: \[ \ln v = \cos x \cdot \ln(\sin x) \] 2. **Differentiate both sides with respect to \( x \)**: - Using the chain rule: \[ \frac{1}{v} \frac{dv}{dx} = \frac{d}{dx}(\cos x \cdot \ln(\sin x)) \] - Apply the product rule on the right side: \[ \frac{d}{dx}(\cos x \cdot \ln(\sin x)) = -\sin x \cdot \ln(\sin x) + \cos x \cdot \frac{1}{\sin x} \cdot \cos x \] 3. **Combine the results**: \[ \frac{1}{v} \frac{dv}{dx} = -\sin x \cdot \ln(\sin x) + \frac{\cos^2 x}{\sin x} \] - Multiply both sides by \( v \): \[ \frac{dv}{dx} = v \left( -\sin x \cdot \ln(\sin x) + \frac{\cos^2 x}{\sin x} \right) \] - Substitute back \( v = (\sin x)^{\cos x} \): \[ \frac{dv}{dx} = (\sin x)^{\cos x} \left( -\sin x \cdot \ln(\sin x) + \frac{\cos^2 x}{\sin x} \right) \] ### Step 3: Combine the derivatives Now that we have \( \frac{du}{dx} \) and \( \frac{dv}{dx} \), we can find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \] Substituting the expressions we derived: \[ \frac{dy}{dx} = x^{\sin x} \left( \cos x \cdot \ln x + \frac{\sin x}{x} \right) + (\sin x)^{\cos x} \left( -\sin x \cdot \ln(\sin x) + \frac{\cos^2 x}{\sin x} \right) \] ### Final Result Thus, the derivative of \( y = x^{\sin x} + (\sin x)^{\cos x} \) with respect to \( x \) is: \[ \frac{dy}{dx} = x^{\sin x} \left( \cos x \cdot \ln x + \frac{\sin x}{x} \right) + (\sin x)^{\cos x} \left( -\sin x \cdot \ln(\sin x) + \frac{\cos^2 x}{\sin x} \right) \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(j) (LONG ANSWER TYPE QUESTIONS (I))|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(k) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(i) (SHORT ANSWER TYPE QUESTIONS)|27 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x : x^(sinx)+(sinx)^(x)

Differentiate the following w.r.t. x : e^(x)sinx

Differentiate the following w.r.t. x : e^(x)/sinx

Differentiate the following w.r.t. x : (sinx)^(x)

Differentiate the following w.r.t. x : log(sinx)

Differentiate the following w.r.t. x : e^(-x)

Differentiate the following w.r.t. x : x^(sinx+cosx)

Differentiate the following w.r.t. x : (sinx)^(sinx)

Differentiate the following w.r.t. x : x^(sinx)+(logx)^(x)

Differentiate the following w.r.t. x : x^(sinx),xgt0

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(i) (LONG ANSWER TYPE QUESTIONS (I))
  1. Differentiate the following w.r.t. x : (x)^(x)+(sinx)^(x)

    Text Solution

    |

  2. Differentiate the following w.r.t. x : (x)^(sinx)+(cosx)^(x)

    Text Solution

    |

  3. Differentiate the following w.r.t. x : x^(sinx)+(sinx)^(cosx)

    Text Solution

    |

  4. Differentiate the following w.r.t. x : (sinx)^(secx)+(tanx)^(cosx)

    Text Solution

    |

  5. Differentiate the following w.r.t. x : (tanx)^(cotx)+x^(tanx),0ltxlt...

    Text Solution

    |

  6. Differentiate the following w.r.t. x : x^(sinx)+(sinx)^(cosx)

    Text Solution

    |

  7. Differentiate the following w.r.t. x : (sinx)^(x)+sin^(-1)sqrtx

    Text Solution

    |

  8. Differentiate the following w.r.t. x:(logx)^x+x^(logx)

    Text Solution

    |

  9. Differentiate the following w.r.t. x : (logx)^(cosx)+(x^(2)+1)/(x^(2...

    Text Solution

    |

  10. Differentiate the following w.r.t. x:(xcosx)^x+(xsinx)^(1/x)

    Text Solution

    |

  11. Differentiate the following w.r.t. x : (cosx)^(x)+(sinx)^(1//x)

    Text Solution

    |

  12. y=e^(sinx)+(tanx)^(x)

    Text Solution

    |

  13. Differentiate the following w.r.t. x : x^(x)-2^(sinx)

    Text Solution

    |

  14. Differentiate the functions given w.r.t. x:(x+1/x)^x+x^((1+1/x))

    Text Solution

    |

  15. Differentiate the following w.r.t. x : x^(x^(2)-3)+(x-3)^(x^(2)),"fo...

    Text Solution

    |

  16. Differentiate the following w.r.t. x : x^(x)+(sinx)^(x)

    Text Solution

    |

  17. Differentiate the following w.r.t. x : ((ax+b)(cx+d))/((ax-b)(cx-d))...

    Text Solution

    |

  18. Differentiate the following w.r.t. x : sqrt(((x-3)(x^(2)+4))/(3x^(2)...

    Text Solution

    |

  19. Differentiate the following w.r.t. x : x^(2)e^(x)sinx

    Text Solution

    |

  20. Differentiate the following w.r.t. x : e^(x)cos^(3)xsin^(2)x

    Text Solution

    |