Home
Class 12
MATHS
Differentiate the following w.r.t. x : ...

Differentiate the following w.r.t. x :
`(sinx)^(secx)+(tanx)^(cosx)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the expression \( (sin x)^{sec x} + (tan x)^{cos x} \) with respect to \( x \), we will use logarithmic differentiation for each term separately. ### Step 1: Differentiate \( (sin x)^{sec x} \) Let \( P = (sin x)^{sec x} \). 1. Take the natural logarithm of both sides: \[ \ln P = sec x \cdot \ln(sin x) \] 2. Differentiate both sides with respect to \( x \): \[ \frac{1}{P} \frac{dP}{dx} = \frac{d}{dx}(sec x \cdot \ln(sin x)) \] 3. Apply the product rule on the right-hand side: \[ \frac{d}{dx}(sec x \cdot \ln(sin x)) = \frac{d(sec x)}{dx} \cdot \ln(sin x) + sec x \cdot \frac{d(\ln(sin x))}{dx} \] 4. Calculate the derivatives: - \( \frac{d(sec x)}{dx} = sec x \cdot tan x \) - \( \frac{d(\ln(sin x))}{dx} = \frac{cos x}{sin x} = cot x \) 5. Substitute back: \[ \frac{1}{P} \frac{dP}{dx} = sec x \cdot tan x \cdot \ln(sin x) + sec x \cdot cot x \] 6. Multiply through by \( P \): \[ \frac{dP}{dx} = P \left( sec x \cdot tan x \cdot \ln(sin x) + sec x \cdot cot x \right) \] 7. Substitute back \( P = (sin x)^{sec x} \): \[ \frac{dP}{dx} = (sin x)^{sec x} \left( sec x \cdot tan x \cdot \ln(sin x) + sec x \cdot cot x \right) \] ### Step 2: Differentiate \( (tan x)^{cos x} \) Let \( Q = (tan x)^{cos x} \). 1. Take the natural logarithm of both sides: \[ \ln Q = cos x \cdot \ln(tan x) \] 2. Differentiate both sides with respect to \( x \): \[ \frac{1}{Q} \frac{dQ}{dx} = \frac{d}{dx}(cos x \cdot \ln(tan x)) \] 3. Apply the product rule: \[ \frac{d}{dx}(cos x \cdot \ln(tan x)) = \frac{d(cos x)}{dx} \cdot \ln(tan x) + cos x \cdot \frac{d(\ln(tan x))}{dx} \] 4. Calculate the derivatives: - \( \frac{d(cos x)}{dx} = -sin x \) - \( \frac{d(\ln(tan x))}{dx} = \frac{sec^2 x}{tan x} \) 5. Substitute back: \[ \frac{1}{Q} \frac{dQ}{dx} = -sin x \cdot \ln(tan x) + cos x \cdot \frac{sec^2 x}{tan x} \] 6. Multiply through by \( Q \): \[ \frac{dQ}{dx} = Q \left( -sin x \cdot \ln(tan x) + cos x \cdot \frac{sec^2 x}{tan x} \right) \] 7. Substitute back \( Q = (tan x)^{cos x} \): \[ \frac{dQ}{dx} = (tan x)^{cos x} \left( -sin x \cdot \ln(tan x) + cos x \cdot \frac{sec^2 x}{tan x} \right) \] ### Step 3: Combine the results Now, we can combine the derivatives of \( P \) and \( Q \): \[ \frac{dy}{dx} = \frac{dP}{dx} + \frac{dQ}{dx} \] Substituting the expressions we found: \[ \frac{dy}{dx} = (sin x)^{sec x} \left( sec x \cdot tan x \cdot \ln(sin x) + sec x \cdot cot x \right) + (tan x)^{cos x} \left( -sin x \cdot \ln(tan x) + cos x \cdot \frac{sec^2 x}{tan x} \right) \] ### Final Answer Thus, the derivative of \( (sin x)^{sec x} + (tan x)^{cos x} \) with respect to \( x \) is: \[ \frac{dy}{dx} = (sin x)^{sec x} \left( sec x \cdot tan x \cdot \ln(sin x) + sec x \cdot cot x \right) + (tan x)^{cos x} \left( -sin x \cdot \ln(tan x) + cos x \cdot \frac{sec^2 x}{tan x} \right) \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(j) (LONG ANSWER TYPE QUESTIONS (I))|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(k) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(i) (SHORT ANSWER TYPE QUESTIONS)|27 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x : (sinx)^(x)

Differentiate the following w.r.t. x : log(sinx)

Differentiate the following w.r.t. x : (sinx)^(sinx)

Differentiate the following w.r.t. x : e^(x)sinx

Differentiate the following w.r.t. x : (sinx)^(tanx)

Differentiate the following w.r.t.x. (sinx)^(cosx)

Differentiate the following w.r.t. x : e^(x)/sinx

Differentiate the following w.r.t. x : (xcosx)^(x)

Differentiate the following w.r.t. x : (x)^(logx)

Differentiate the following w.r.t. x : (logx)^(x)

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(i) (LONG ANSWER TYPE QUESTIONS (I))
  1. Differentiate the following w.r.t. x : (x)^(sinx)+(cosx)^(x)

    Text Solution

    |

  2. Differentiate the following w.r.t. x : x^(sinx)+(sinx)^(cosx)

    Text Solution

    |

  3. Differentiate the following w.r.t. x : (sinx)^(secx)+(tanx)^(cosx)

    Text Solution

    |

  4. Differentiate the following w.r.t. x : (tanx)^(cotx)+x^(tanx),0ltxlt...

    Text Solution

    |

  5. Differentiate the following w.r.t. x : x^(sinx)+(sinx)^(cosx)

    Text Solution

    |

  6. Differentiate the following w.r.t. x : (sinx)^(x)+sin^(-1)sqrtx

    Text Solution

    |

  7. Differentiate the following w.r.t. x:(logx)^x+x^(logx)

    Text Solution

    |

  8. Differentiate the following w.r.t. x : (logx)^(cosx)+(x^(2)+1)/(x^(2...

    Text Solution

    |

  9. Differentiate the following w.r.t. x:(xcosx)^x+(xsinx)^(1/x)

    Text Solution

    |

  10. Differentiate the following w.r.t. x : (cosx)^(x)+(sinx)^(1//x)

    Text Solution

    |

  11. y=e^(sinx)+(tanx)^(x)

    Text Solution

    |

  12. Differentiate the following w.r.t. x : x^(x)-2^(sinx)

    Text Solution

    |

  13. Differentiate the functions given w.r.t. x:(x+1/x)^x+x^((1+1/x))

    Text Solution

    |

  14. Differentiate the following w.r.t. x : x^(x^(2)-3)+(x-3)^(x^(2)),"fo...

    Text Solution

    |

  15. Differentiate the following w.r.t. x : x^(x)+(sinx)^(x)

    Text Solution

    |

  16. Differentiate the following w.r.t. x : ((ax+b)(cx+d))/((ax-b)(cx-d))...

    Text Solution

    |

  17. Differentiate the following w.r.t. x : sqrt(((x-3)(x^(2)+4))/(3x^(2)...

    Text Solution

    |

  18. Differentiate the following w.r.t. x : x^(2)e^(x)sinx

    Text Solution

    |

  19. Differentiate the following w.r.t. x : e^(x)cos^(3)xsin^(2)x

    Text Solution

    |

  20. Differentiate the following w.r.t. x : (x+3)^(2)(x+4)^(3)(x+5)^(4)

    Text Solution

    |