Home
Class 12
MATHS
Differentiate the following w.r.t. x : ...

Differentiate the following w.r.t. x :
`(tanx)^(cotx)+x^(tanx),0ltxltpi/4`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = (\tan x)^{\cot x} + x^{\tan x} \) with respect to \( x \), we will use the properties of logarithms and the chain rule. Let's break it down step by step. ### Step 1: Differentiate \( y = (\tan x)^{\cot x} \) Let \( p = (\tan x)^{\cot x} \). To differentiate \( p \), we will take the natural logarithm of both sides: \[ \ln p = \cot x \cdot \ln(\tan x) \] Now, differentiate both sides with respect to \( x \): \[ \frac{1}{p} \frac{dp}{dx} = \frac{d}{dx}(\cot x \cdot \ln(\tan x)) \] Using the product rule on the right side: \[ \frac{d}{dx}(\cot x) \cdot \ln(\tan x) + \cot x \cdot \frac{d}{dx}(\ln(\tan x)) \] Now, we know: \[ \frac{d}{dx}(\cot x) = -\csc^2 x \] \[ \frac{d}{dx}(\ln(\tan x)) = \frac{1}{\tan x} \cdot \sec^2 x = \frac{\sec^2 x}{\tan x} \] So, substituting these derivatives back, we have: \[ \frac{1}{p} \frac{dp}{dx} = -\csc^2 x \cdot \ln(\tan x) + \cot x \cdot \frac{\sec^2 x}{\tan x} \] Multiplying through by \( p \): \[ \frac{dp}{dx} = p \left( -\csc^2 x \cdot \ln(\tan x) + \cot x \cdot \frac{\sec^2 x}{\tan x} \right) \] Substituting back \( p = (\tan x)^{\cot x} \): \[ \frac{dp}{dx} = (\tan x)^{\cot x} \left( -\csc^2 x \cdot \ln(\tan x) + \cot x \cdot \frac{\sec^2 x}{\tan x} \right) \] ### Step 2: Differentiate \( y = x^{\tan x} \) Let \( q = x^{\tan x} \). Taking the natural logarithm: \[ \ln q = \tan x \cdot \ln x \] Differentiating both sides: \[ \frac{1}{q} \frac{dq}{dx} = \frac{d}{dx}(\tan x \cdot \ln x) \] Using the product rule: \[ \frac{d}{dx}(\tan x) \cdot \ln x + \tan x \cdot \frac{d}{dx}(\ln x) \] We know: \[ \frac{d}{dx}(\tan x) = \sec^2 x \] \[ \frac{d}{dx}(\ln x) = \frac{1}{x} \] So substituting these back: \[ \frac{1}{q} \frac{dq}{dx} = \sec^2 x \cdot \ln x + \tan x \cdot \frac{1}{x} \] Multiplying through by \( q \): \[ \frac{dq}{dx} = x^{\tan x} \left( \sec^2 x \cdot \ln x + \frac{\tan x}{x} \right) \] ### Step 3: Combine the results Now, we have: \[ \frac{dy}{dx} = \frac{dp}{dx} + \frac{dq}{dx} \] Substituting the expressions we found for \( \frac{dp}{dx} \) and \( \frac{dq}{dx} \): \[ \frac{dy}{dx} = (\tan x)^{\cot x} \left( -\csc^2 x \cdot \ln(\tan x) + \cot x \cdot \frac{\sec^2 x}{\tan x} \right) + x^{\tan x} \left( \sec^2 x \cdot \ln x + \frac{\tan x}{x} \right) \] This gives us the final derivative of the function.
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(j) (LONG ANSWER TYPE QUESTIONS (I))|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(k) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(i) (SHORT ANSWER TYPE QUESTIONS)|27 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x : (sinx)^(x)

Differentiate the following w.r.t. x : (x)^(logx)

Differentiate the following w.r.t. x : (logx)^(x)

Differentiate the following w.r.t. x : log(sinx)

Differentiate the following w.r.t.x : sin(cotx)

Differentiate the following w.r.t. x : e^(x)/x

Differentiate the following w.r.t. x : e^(-x)

Differentiate the following w.r.t. x : (logx)/x

Differentiate the following w.r.t. x : (sqrtx)^(sqrtx)

Differentiate the following w.r.t. x : sqrt(tanx) a^(x) .

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(i) (LONG ANSWER TYPE QUESTIONS (I))
  1. Differentiate the following w.r.t. x : x^(sinx)+(sinx)^(cosx)

    Text Solution

    |

  2. Differentiate the following w.r.t. x : (sinx)^(secx)+(tanx)^(cosx)

    Text Solution

    |

  3. Differentiate the following w.r.t. x : (tanx)^(cotx)+x^(tanx),0ltxlt...

    Text Solution

    |

  4. Differentiate the following w.r.t. x : x^(sinx)+(sinx)^(cosx)

    Text Solution

    |

  5. Differentiate the following w.r.t. x : (sinx)^(x)+sin^(-1)sqrtx

    Text Solution

    |

  6. Differentiate the following w.r.t. x:(logx)^x+x^(logx)

    Text Solution

    |

  7. Differentiate the following w.r.t. x : (logx)^(cosx)+(x^(2)+1)/(x^(2...

    Text Solution

    |

  8. Differentiate the following w.r.t. x:(xcosx)^x+(xsinx)^(1/x)

    Text Solution

    |

  9. Differentiate the following w.r.t. x : (cosx)^(x)+(sinx)^(1//x)

    Text Solution

    |

  10. y=e^(sinx)+(tanx)^(x)

    Text Solution

    |

  11. Differentiate the following w.r.t. x : x^(x)-2^(sinx)

    Text Solution

    |

  12. Differentiate the functions given w.r.t. x:(x+1/x)^x+x^((1+1/x))

    Text Solution

    |

  13. Differentiate the following w.r.t. x : x^(x^(2)-3)+(x-3)^(x^(2)),"fo...

    Text Solution

    |

  14. Differentiate the following w.r.t. x : x^(x)+(sinx)^(x)

    Text Solution

    |

  15. Differentiate the following w.r.t. x : ((ax+b)(cx+d))/((ax-b)(cx-d))...

    Text Solution

    |

  16. Differentiate the following w.r.t. x : sqrt(((x-3)(x^(2)+4))/(3x^(2)...

    Text Solution

    |

  17. Differentiate the following w.r.t. x : x^(2)e^(x)sinx

    Text Solution

    |

  18. Differentiate the following w.r.t. x : e^(x)cos^(3)xsin^(2)x

    Text Solution

    |

  19. Differentiate the following w.r.t. x : (x+3)^(2)(x+4)^(3)(x+5)^(4)

    Text Solution

    |

  20. Differentiate the following w.r.t. x : sqrt((x-1)(x-2)(x-3)(x-4))

    Text Solution

    |