Home
Class 12
MATHS
Differentiate the following w.r.t. x : ...

Differentiate the following w.r.t. x :
`(logx)^(cosx)+(x^(2)+1)/(x^(2)-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the given function \( y = (\log x)^{\cos x} + \frac{x^2 + 1}{x^2 - 1} \) with respect to \( x \), we will follow these steps: ### Step 1: Identify the components of the function The function can be split into two parts: - \( u = (\log x)^{\cos x} \) - \( v = \frac{x^2 + 1}{x^2 - 1} \) Thus, we can express \( y \) as: \[ y = u + v \] ### Step 2: Differentiate using the sum rule Using the sum rule of differentiation, we have: \[ \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \] ### Step 3: Differentiate \( u = (\log x)^{\cos x} \) To differentiate \( u \), we will use logarithmic differentiation: 1. Take the natural logarithm of both sides: \[ \log u = \cos x \cdot \log(\log x) \] 2. Differentiate both sides with respect to \( x \): \[ \frac{1}{u} \frac{du}{dx} = -\sin x \cdot \log(\log x) + \cos x \cdot \frac{1}{\log x} \cdot \frac{1}{x} \] 3. Rearranging gives: \[ \frac{du}{dx} = u \left( -\sin x \cdot \log(\log x) + \frac{\cos x}{x \log x} \right) \] 4. Substitute back \( u = (\log x)^{\cos x} \): \[ \frac{du}{dx} = (\log x)^{\cos x} \left( -\sin x \cdot \log(\log x) + \frac{\cos x}{x \log x} \right) \] ### Step 4: Differentiate \( v = \frac{x^2 + 1}{x^2 - 1} \) Using the quotient rule: 1. Let \( a = x^2 + 1 \) and \( b = x^2 - 1 \). 2. The derivative using the quotient rule is: \[ \frac{dv}{dx} = \frac{b \cdot \frac{da}{dx} - a \cdot \frac{db}{dx}}{b^2} \] 3. Calculate \( \frac{da}{dx} = 2x \) and \( \frac{db}{dx} = 2x \): \[ \frac{dv}{dx} = \frac{(x^2 - 1)(2x) - (x^2 + 1)(2x)}{(x^2 - 1)^2} \] 4. Simplifying gives: \[ \frac{dv}{dx} = \frac{2x(x^2 - 1 - x^2 - 1)}{(x^2 - 1)^2} = \frac{-4x}{(x^2 - 1)^2} \] ### Step 5: Combine the derivatives Now we can combine the derivatives: \[ \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \] Substituting the expressions we found: \[ \frac{dy}{dx} = (\log x)^{\cos x} \left( -\sin x \cdot \log(\log x) + \frac{\cos x}{x \log x} \right) - \frac{4x}{(x^2 - 1)^2} \] ### Final Answer Thus, the derivative of the given function is: \[ \frac{dy}{dx} = (\log x)^{\cos x} \left( -\sin x \cdot \log(\log x) + \frac{\cos x}{x \log x} \right) - \frac{4x}{(x^2 - 1)^2} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(j) (LONG ANSWER TYPE QUESTIONS (I))|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(k) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(i) (SHORT ANSWER TYPE QUESTIONS)|27 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x : (logx)/x

Differentiate the following w.r.t. x : (logx)^(x)

Differentiate the following w.r.t. x : (logx)/e^(x)

Differentiate the following w.r.t. x : (x)^(logx)

Differentiate the following w.r.t. x : 1/(logcosx)

Differentiate the following w.r.t. x : (logx)^(logx),xgt1

Differentiate the following w.r.t. x : e^(x)/x

Differentiate the following w.r.t. x : (1+x)^(logx)

Differentiate the following w.r.t. x : (logx)^(x)+(x)^(cosx)

Differentiate the following w.r.t. x : (1/2)^(x)

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(i) (LONG ANSWER TYPE QUESTIONS (I))
  1. Differentiate the following w.r.t. x : (sinx)^(x)+sin^(-1)sqrtx

    Text Solution

    |

  2. Differentiate the following w.r.t. x:(logx)^x+x^(logx)

    Text Solution

    |

  3. Differentiate the following w.r.t. x : (logx)^(cosx)+(x^(2)+1)/(x^(2...

    Text Solution

    |

  4. Differentiate the following w.r.t. x:(xcosx)^x+(xsinx)^(1/x)

    Text Solution

    |

  5. Differentiate the following w.r.t. x : (cosx)^(x)+(sinx)^(1//x)

    Text Solution

    |

  6. y=e^(sinx)+(tanx)^(x)

    Text Solution

    |

  7. Differentiate the following w.r.t. x : x^(x)-2^(sinx)

    Text Solution

    |

  8. Differentiate the functions given w.r.t. x:(x+1/x)^x+x^((1+1/x))

    Text Solution

    |

  9. Differentiate the following w.r.t. x : x^(x^(2)-3)+(x-3)^(x^(2)),"fo...

    Text Solution

    |

  10. Differentiate the following w.r.t. x : x^(x)+(sinx)^(x)

    Text Solution

    |

  11. Differentiate the following w.r.t. x : ((ax+b)(cx+d))/((ax-b)(cx-d))...

    Text Solution

    |

  12. Differentiate the following w.r.t. x : sqrt(((x-3)(x^(2)+4))/(3x^(2)...

    Text Solution

    |

  13. Differentiate the following w.r.t. x : x^(2)e^(x)sinx

    Text Solution

    |

  14. Differentiate the following w.r.t. x : e^(x)cos^(3)xsin^(2)x

    Text Solution

    |

  15. Differentiate the following w.r.t. x : (x+3)^(2)(x+4)^(3)(x+5)^(4)

    Text Solution

    |

  16. Differentiate the following w.r.t. x : sqrt((x-1)(x-2)(x-3)(x-4))

    Text Solution

    |

  17. If x y=e^(x-y) , find (dy)/(dx) .

    Text Solution

    |

  18. If (sinx)^(y)=(siny)^(x),"find "dy/dx.

    Text Solution

    |

  19. Find dy/dx" if "(sinx)^(cosy)=(cosy)^(sinx).

    Text Solution

    |

  20. Differentiate log(x^(x)+cosec^(2)x) w.r.t. x.

    Text Solution

    |