Home
Class 12
MATHS
Differentiate the following w.r.t. x : ...

Differentiate the following w.r.t. x :
`(cosx)^(x)+(sinx)^(1//x)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = (\cos x)^x + (\sin x)^{\frac{1}{x}} \) with respect to \( x \), we will use the properties of logarithms and the product rule for differentiation. Let's break it down step by step. ### Step 1: Differentiate \( u = (\cos x)^x \) 1. **Take the natural logarithm of both sides:** \[ \log u = x \log (\cos x) \] 2. **Differentiate both sides with respect to \( x \):** Using implicit differentiation: \[ \frac{1}{u} \frac{du}{dx} = \log (\cos x) + x \cdot \frac{-\sin x}{\cos x} \] Here, we used the product rule on \( x \log (\cos x) \). 3. **Solve for \( \frac{du}{dx} \):** \[ \frac{du}{dx} = u \left( \log (\cos x) - x \tan x \right) \] Substituting back \( u = (\cos x)^x \): \[ \frac{du}{dx} = (\cos x)^x \left( \log (\cos x) - x \tan x \right) \] ### Step 2: Differentiate \( v = (\sin x)^{\frac{1}{x}} \) 1. **Take the natural logarithm of both sides:** \[ \log v = \frac{1}{x} \log (\sin x) \] 2. **Differentiate both sides with respect to \( x \):** Using the quotient rule: \[ \frac{1}{v} \frac{dv}{dx} = \frac{-1}{x^2} \log (\sin x) + \frac{1}{x} \cdot \frac{\cos x}{\sin x} \] 3. **Solve for \( \frac{dv}{dx} \):** \[ \frac{dv}{dx} = v \left( \frac{\cos x}{\sin x} \cdot \frac{1}{x} - \frac{\log (\sin x)}{x^2} \right) \] Substituting back \( v = (\sin x)^{\frac{1}{x}} \): \[ \frac{dv}{dx} = (\sin x)^{\frac{1}{x}} \left( \frac{\cot x}{x} - \frac{\log (\sin x)}{x^2} \right) \] ### Step 3: Combine the derivatives Now, we can combine the derivatives of \( u \) and \( v \) to find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \] Substituting the expressions we found: \[ \frac{dy}{dx} = (\cos x)^x \left( \log (\cos x) - x \tan x \right) + (\sin x)^{\frac{1}{x}} \left( \frac{\cot x}{x} - \frac{\log (\sin x)}{x^2} \right) \] ### Final Answer Thus, the derivative of \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = (\cos x)^x \left( \log (\cos x) - x \tan x \right) + (\sin x)^{\frac{1}{x}} \left( \frac{\cot x}{x} - \frac{\log (\sin x)}{x^2} \right) \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(j) (LONG ANSWER TYPE QUESTIONS (I))|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(k) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(i) (SHORT ANSWER TYPE QUESTIONS)|27 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x : (xcosx)^(x)

Differentiate the following w.r.t. x : (sinx)^(x)

Differentiate the following w.r.t. x : cos(x^(x))

Differentiate the following w.r.t. x : (logx)/e^(x)

Differentiate the following w.r.t. x : (logx)^(x)

Differentiate the following w.r.t. x : (logx)/x

Differentiate the following w.r.t. x : (sinx)^(sinx)

Differentiate the following w.r.t. x : (logx)^(cosx)

Differentiate the following w.r.t. x : log(sinx)

Differentiate the following w.r.t. x : (sinx)^(tanx)

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(i) (LONG ANSWER TYPE QUESTIONS (I))
  1. Differentiate the following w.r.t. x : (logx)^(cosx)+(x^(2)+1)/(x^(2...

    Text Solution

    |

  2. Differentiate the following w.r.t. x:(xcosx)^x+(xsinx)^(1/x)

    Text Solution

    |

  3. Differentiate the following w.r.t. x : (cosx)^(x)+(sinx)^(1//x)

    Text Solution

    |

  4. y=e^(sinx)+(tanx)^(x)

    Text Solution

    |

  5. Differentiate the following w.r.t. x : x^(x)-2^(sinx)

    Text Solution

    |

  6. Differentiate the functions given w.r.t. x:(x+1/x)^x+x^((1+1/x))

    Text Solution

    |

  7. Differentiate the following w.r.t. x : x^(x^(2)-3)+(x-3)^(x^(2)),"fo...

    Text Solution

    |

  8. Differentiate the following w.r.t. x : x^(x)+(sinx)^(x)

    Text Solution

    |

  9. Differentiate the following w.r.t. x : ((ax+b)(cx+d))/((ax-b)(cx-d))...

    Text Solution

    |

  10. Differentiate the following w.r.t. x : sqrt(((x-3)(x^(2)+4))/(3x^(2)...

    Text Solution

    |

  11. Differentiate the following w.r.t. x : x^(2)e^(x)sinx

    Text Solution

    |

  12. Differentiate the following w.r.t. x : e^(x)cos^(3)xsin^(2)x

    Text Solution

    |

  13. Differentiate the following w.r.t. x : (x+3)^(2)(x+4)^(3)(x+5)^(4)

    Text Solution

    |

  14. Differentiate the following w.r.t. x : sqrt((x-1)(x-2)(x-3)(x-4))

    Text Solution

    |

  15. If x y=e^(x-y) , find (dy)/(dx) .

    Text Solution

    |

  16. If (sinx)^(y)=(siny)^(x),"find "dy/dx.

    Text Solution

    |

  17. Find dy/dx" if "(sinx)^(cosy)=(cosy)^(sinx).

    Text Solution

    |

  18. Differentiate log(x^(x)+cosec^(2)x) w.r.t. x.

    Text Solution

    |

  19. If x^(p)y^(q)=(x+y)^(p+q), show that dy/dx=y/x.

    Text Solution

    |

  20. If y=x^(y), show that dy/dx=y^(2)/(x(1-ylogx))

    Text Solution

    |