Home
Class 12
MATHS
Differentiate the following w.r.t. x : ...

Differentiate the following w.r.t. x :
`x^(x^(2)-3)+(x-3)^(x^(2)),"for "xgt3`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = x^{(x^2 - 3)} + (x - 3)^{x^2} \) with respect to \( x \), we will use logarithmic differentiation and the product rule. Here’s a step-by-step solution: ### Step 1: Define the function Let: \[ y = x^{(x^2 - 3)} + (x - 3)^{x^2} \] ### Step 2: Differentiate using the sum rule We can differentiate \( y \) using the sum rule: \[ \frac{dy}{dx} = \frac{d}{dx}(x^{(x^2 - 3)}) + \frac{d}{dx}((x - 3)^{x^2}) \] ### Step 3: Differentiate the first term \( u = x^{(x^2 - 3)} \) To differentiate \( u = x^{(x^2 - 3)} \), we will use logarithmic differentiation: 1. Take the natural logarithm: \[ \ln u = (x^2 - 3) \ln x \] 2. Differentiate both sides: \[ \frac{1}{u} \frac{du}{dx} = \frac{d}{dx}((x^2 - 3) \ln x) \] Using the product rule: \[ \frac{d}{dx}((x^2 - 3) \ln x) = (2x) \ln x + (x^2 - 3) \frac{1}{x} \] Therefore: \[ \frac{du}{dx} = u \left( 2x \ln x + \frac{x^2 - 3}{x} \right) \] Substituting back \( u = x^{(x^2 - 3)} \): \[ \frac{du}{dx} = x^{(x^2 - 3)} \left( 2x \ln x + \frac{x^2 - 3}{x} \right) \] ### Step 4: Differentiate the second term \( v = (x - 3)^{x^2} \) Similarly, for \( v = (x - 3)^{x^2} \): 1. Take the natural logarithm: \[ \ln v = x^2 \ln(x - 3) \] 2. Differentiate both sides: \[ \frac{1}{v} \frac{dv}{dx} = \frac{d}{dx}(x^2 \ln(x - 3)) \] Again using the product rule: \[ \frac{d}{dx}(x^2 \ln(x - 3)) = (2x) \ln(x - 3) + x^2 \frac{1}{x - 3} \] Therefore: \[ \frac{dv}{dx} = v \left( 2x \ln(x - 3) + \frac{x^2}{x - 3} \right) \] Substituting back \( v = (x - 3)^{x^2} \): \[ \frac{dv}{dx} = (x - 3)^{x^2} \left( 2x \ln(x - 3) + \frac{x^2}{x - 3} \right) \] ### Step 5: Combine the results Now we can combine the derivatives: \[ \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \] Substituting the expressions for \( \frac{du}{dx} \) and \( \frac{dv}{dx} \): \[ \frac{dy}{dx} = x^{(x^2 - 3)} \left( 2x \ln x + \frac{x^2 - 3}{x} \right) + (x - 3)^{x^2} \left( 2x \ln(x - 3) + \frac{x^2}{x - 3} \right) \] ### Final Answer Thus, the derivative of the function \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = x^{(x^2 - 3)} \left( 2x \ln x + \frac{x^2 - 3}{x} \right) + (x - 3)^{x^2} \left( 2x \ln(x - 3) + \frac{x^2}{x - 3} \right) \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(j) (LONG ANSWER TYPE QUESTIONS (I))|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(k) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(i) (SHORT ANSWER TYPE QUESTIONS)|27 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x : e^(-x)

Differentiate the following w.r.t. x : e^(x^(3))

Differentiate the following w.r.t. x : (x^(x))^(x)

Differentiate the following w.r.t. x : e^(x)/x

Differentiate the following w.r.t. x : cos(x^(x))

Differentiate the following w.r.t.x : sin(x^(2))

Differentiate the following w.r.t. x : (sinx)^(x)

Differentiate the following w.r.t. x : (logx)^(x)

Differentiate the following w.r.t. x : (x)^(logx)

Differentiate the following w.r.t.x : sin(x^2)

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(i) (LONG ANSWER TYPE QUESTIONS (I))
  1. Differentiate the following w.r.t. x : x^(x)-2^(sinx)

    Text Solution

    |

  2. Differentiate the functions given w.r.t. x:(x+1/x)^x+x^((1+1/x))

    Text Solution

    |

  3. Differentiate the following w.r.t. x : x^(x^(2)-3)+(x-3)^(x^(2)),"fo...

    Text Solution

    |

  4. Differentiate the following w.r.t. x : x^(x)+(sinx)^(x)

    Text Solution

    |

  5. Differentiate the following w.r.t. x : ((ax+b)(cx+d))/((ax-b)(cx-d))...

    Text Solution

    |

  6. Differentiate the following w.r.t. x : sqrt(((x-3)(x^(2)+4))/(3x^(2)...

    Text Solution

    |

  7. Differentiate the following w.r.t. x : x^(2)e^(x)sinx

    Text Solution

    |

  8. Differentiate the following w.r.t. x : e^(x)cos^(3)xsin^(2)x

    Text Solution

    |

  9. Differentiate the following w.r.t. x : (x+3)^(2)(x+4)^(3)(x+5)^(4)

    Text Solution

    |

  10. Differentiate the following w.r.t. x : sqrt((x-1)(x-2)(x-3)(x-4))

    Text Solution

    |

  11. If x y=e^(x-y) , find (dy)/(dx) .

    Text Solution

    |

  12. If (sinx)^(y)=(siny)^(x),"find "dy/dx.

    Text Solution

    |

  13. Find dy/dx" if "(sinx)^(cosy)=(cosy)^(sinx).

    Text Solution

    |

  14. Differentiate log(x^(x)+cosec^(2)x) w.r.t. x.

    Text Solution

    |

  15. If x^(p)y^(q)=(x+y)^(p+q), show that dy/dx=y/x.

    Text Solution

    |

  16. If y=x^(y), show that dy/dx=y^(2)/(x(1-ylogx))

    Text Solution

    |

  17. If y^(x)=e^(y-x), then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)

    Text Solution

    |

  18. If x^x+y^x=1 , prove that (dy)/(dx)=-{(x^x(1+logx)+y^x logy)/(x y^((x...

    Text Solution

    |

  19. If x^(y)+y^(x)=1,"find "dy/dx

    Text Solution

    |

  20. If x^y+y^x=a^b , then find dy/dx.

    Text Solution

    |