Home
Class 12
MATHS
Differentiate the following w.r.t. x : ...

Differentiate the following w.r.t. x :
`sqrt(((x-3)(x^(2)+4))/(3x^(2)+4x+5))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \sqrt{\frac{(x-3)(x^2+4)}{3x^2+4x+5}} \) with respect to \( x \), we will use the chain rule and the quotient rule. Here’s a step-by-step solution: ### Step 1: Rewrite the function Let: \[ y = \sqrt{\frac{(x-3)(x^2+4)}{3x^2+4x+5}} \] We can rewrite this as: \[ y = \left(\frac{(x-3)(x^2+4)}{3x^2+4x+5}\right)^{1/2} \] ### Step 2: Differentiate using the chain rule Using the chain rule, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{1}{2} \left(\frac{(x-3)(x^2+4)}{3x^2+4x+5}\right)^{-1/2} \cdot \frac{d}{dx}\left(\frac{(x-3)(x^2+4)}{3x^2+4x+5}\right) \] ### Step 3: Differentiate the inner function using the quotient rule Let: \[ u = (x-3)(x^2+4) \quad \text{and} \quad v = 3x^2 + 4x + 5 \] Using the quotient rule: \[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] ### Step 4: Find \( \frac{du}{dx} \) and \( \frac{dv}{dx} \) 1. **Differentiate \( u \)**: \[ u = (x-3)(x^2+4) \] Using the product rule: \[ \frac{du}{dx} = (x^2+4) \cdot 1 + (x-3) \cdot 2x = x^2 + 4 + 2x^2 - 6x = 3x^2 - 6x + 4 \] 2. **Differentiate \( v \)**: \[ v = 3x^2 + 4x + 5 \] \[ \frac{dv}{dx} = 6x + 4 \] ### Step 5: Substitute back into the quotient rule Now substituting \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \) into the quotient rule: \[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{(3x^2 + 4x + 5)(3x^2 - 6x + 4) - (x-3)(x^2 + 4)(6x + 4)}{(3x^2 + 4x + 5)^2} \] ### Step 6: Combine everything Now substituting this result back into the derivative of \( y \): \[ \frac{dy}{dx} = \frac{1}{2} \left(\frac{(x-3)(x^2+4)}{3x^2+4x+5}\right)^{-1/2} \cdot \frac{(3x^2 + 4x + 5)(3x^2 - 6x + 4) - (x-3)(x^2 + 4)(6x + 4)}{(3x^2 + 4x + 5)^2} \] ### Step 7: Final expression Thus, the final expression for the derivative is: \[ \frac{dy}{dx} = \frac{1}{2\sqrt{\frac{(x-3)(x^2+4)}{3x^2+4x+5}}} \cdot \frac{(3x^2 + 4x + 5)(3x^2 - 6x + 4) - (x-3)(x^2 + 4)(6x + 4)}{(3x^2 + 4x + 5)^2} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(j) (LONG ANSWER TYPE QUESTIONS (I))|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(k) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(i) (SHORT ANSWER TYPE QUESTIONS)|27 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x : cos(x^(x))

Differentiate the following w.r.t. x : e^(x)/x

Differentiate the following w.r.t.x : sin(x^2)

Differentiate the following w.r.t. x : e^(-x)

Differentiate the following w.r.t. x : sqrtxlogx^(2)

Differentiate the following w.r.t. x : (x^(x))^(x)

Differentiate the following w.r.t. x : (sinx)^(x)

Differentiate the following w.r.t. x : (logx)^(x)

Differentiate the following w.r.t. x : (x)^(logx)

Differentiate the following w.r.t.x. x^(x)