Home
Class 12
MATHS
Find dy/dx" if "(sinx)^(cosy)=(cosy)^(si...

Find `dy/dx" if "(sinx)^(cosy)=(cosy)^(sinx)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the equation \((\sin x)^{\cos y} = (\cos y)^{\sin x}\), we will use implicit differentiation. Here’s the step-by-step solution: ### Step 1: Take the natural logarithm of both sides We start by taking the natural logarithm of both sides of the equation to simplify the powers: \[ \ln((\sin x)^{\cos y}) = \ln((\cos y)^{\sin x}) \] ### Step 2: Apply the logarithmic identity Using the property of logarithms, \(\ln(a^b) = b \ln a\), we can rewrite the equation: \[ \cos y \cdot \ln(\sin x) = \sin x \cdot \ln(\cos y) \] ### Step 3: Differentiate both sides with respect to \(x\) Now we differentiate both sides with respect to \(x\). We will use the product rule and chain rule where necessary. **Left Side:** Using the product rule on the left side: \[ \frac{d}{dx}(\cos y \cdot \ln(\sin x)) = \frac{d(\cos y)}{dx} \cdot \ln(\sin x) + \cos y \cdot \frac{d}{dx}(\ln(\sin x)) \] The derivative of \(\ln(\sin x)\) is \(\frac{\cos x}{\sin x} = \cot x\). Thus, we have: \[ \frac{d}{dx}(\cos y) \cdot \ln(\sin x) + \cos y \cdot \cot x \] Using the chain rule, \(\frac{d(\cos y)}{dx} = -\sin y \cdot \frac{dy}{dx}\): \[ -\sin y \cdot \frac{dy}{dx} \cdot \ln(\sin x) + \cos y \cdot \cot x \] **Right Side:** Now for the right side: \[ \frac{d}{dx}(\sin x \cdot \ln(\cos y)) = \frac{d(\sin x)}{dx} \cdot \ln(\cos y) + \sin x \cdot \frac{d}{dx}(\ln(\cos y)) \] The derivative of \(\ln(\cos y)\) is \(-\tan y \cdot \frac{dy}{dx}\): \[ \cos x \cdot \ln(\cos y) - \sin x \cdot \tan y \cdot \frac{dy}{dx} \] ### Step 4: Set the derivatives equal Now we set the derivatives from both sides equal to each other: \[ -\sin y \cdot \frac{dy}{dx} \cdot \ln(\sin x) + \cos y \cdot \cot x = \cos x \cdot \ln(\cos y) - \sin x \cdot \tan y \cdot \frac{dy}{dx} \] ### Step 5: Collect all \(\frac{dy}{dx}\) terms Rearranging the equation to isolate \(\frac{dy}{dx}\): \[ -\sin y \cdot \frac{dy}{dx} \cdot \ln(\sin x) + \sin x \cdot \tan y \cdot \frac{dy}{dx} = \cos x \cdot \ln(\cos y) - \cos y \cdot \cot x \] Factoring out \(\frac{dy}{dx}\): \[ \frac{dy}{dx} \left(-\sin y \cdot \ln(\sin x) + \sin x \cdot \tan y\right) = \cos x \cdot \ln(\cos y) - \cos y \cdot \cot x \] ### Step 6: Solve for \(\frac{dy}{dx}\) Finally, we solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{\cos x \cdot \ln(\cos y) - \cos y \cdot \cot x}{-\sin y \cdot \ln(\sin x) + \sin x \cdot \tan y} \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{\cos x \cdot \ln(\cos y) - \cos y \cdot \cot x}{-\sin y \cdot \ln(\sin x) + \sin x \cdot \tan y} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(j) (LONG ANSWER TYPE QUESTIONS (I))|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(k) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(i) (SHORT ANSWER TYPE QUESTIONS)|27 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Find dy/dx if xy=sinx .

Find (dy)/(dx) , if y=(sinx)^(cosx)

Find dy/dx if : ax+by^(2)=cosy

Find (dy)/(dx) , when: (cosx)^(y)=(cosy)^(x)

Find (dy)/(dx) if ax+by^2=cosy

Find (dy)/(dx) , when: y=(sinx)^(cosx)

If (sinx)^(y)=(siny)^(x),"find "dy/dx .

Find (dy)/(dx) , when: y=x^(sinx)+(sinx)^(cosx)

Find dy/dx in the following : ax+by^(2)=cosy

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(i) (LONG ANSWER TYPE QUESTIONS (I))
  1. Differentiate the following w.r.t. x : x^(2)e^(x)sinx

    Text Solution

    |

  2. Differentiate the following w.r.t. x : e^(x)cos^(3)xsin^(2)x

    Text Solution

    |

  3. Differentiate the following w.r.t. x : (x+3)^(2)(x+4)^(3)(x+5)^(4)

    Text Solution

    |

  4. Differentiate the following w.r.t. x : sqrt((x-1)(x-2)(x-3)(x-4))

    Text Solution

    |

  5. If x y=e^(x-y) , find (dy)/(dx) .

    Text Solution

    |

  6. If (sinx)^(y)=(siny)^(x),"find "dy/dx.

    Text Solution

    |

  7. Find dy/dx" if "(sinx)^(cosy)=(cosy)^(sinx).

    Text Solution

    |

  8. Differentiate log(x^(x)+cosec^(2)x) w.r.t. x.

    Text Solution

    |

  9. If x^(p)y^(q)=(x+y)^(p+q), show that dy/dx=y/x.

    Text Solution

    |

  10. If y=x^(y), show that dy/dx=y^(2)/(x(1-ylogx))

    Text Solution

    |

  11. If y^(x)=e^(y-x), then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)

    Text Solution

    |

  12. If x^x+y^x=1 , prove that (dy)/(dx)=-{(x^x(1+logx)+y^x logy)/(x y^((x...

    Text Solution

    |

  13. If x^(y)+y^(x)=1,"find "dy/dx

    Text Solution

    |

  14. If x^y+y^x=a^b , then find dy/dx.

    Text Solution

    |

  15. If x^(y)+y^(x)=4,"find "dy/dx

    Text Solution

    |

  16. If x^(y)+y^(x)=loga,"find "dy/dx.

    Text Solution

    |

  17. Show that if x^(y)+y^(x)=m^(n), then : dy/dx=-(y^(x)logy+yx^(y-1))/(...

    Text Solution

    |

  18. Find the derivative of the function given by : f(x)=(1+x)(1+x^(2))(1...

    Text Solution

    |

  19. Differentiate (x^2-5x+8)(x^3+7x+9) in three ways mentioned below:(i) ...

    Text Solution

    |

  20. If u, v and w are functions of x, then show thatd/(dx)(udotvdotw)=(d u...

    Text Solution

    |