Home
Class 12
MATHS
If y=(sinx)^((sinx)^((sinx)...oo))," pro...

If `y=(sinx)^((sinx)^((sinx)...oo))," prove that "(dy)/(dx)=(y^(2)cotx)/((1-ylog sinx)).`

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(k) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(k) (LONG ANSWER TYPE QUESTIONS (I))|51 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(i) (LONG ANSWER TYPE QUESTIONS (I))|49 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

y=x^(sinx)+a^(sinx)

int(cotx)/(log(sinx))dx

"If "y=(sinx)^(cosx)+(cosx)^(sinx)", prove that "(dy)/(dx)=(sinx)^(cosx).[cot x cos x-sin x(log sinx)]+(cosx)^(sinx).[cosx(log cos x)-sinx tanx].

"If "y=(x)^(cosx)+(sinx)^(tanx)", prove that "(dy)/(dx)=x^(cosx){(cosx)/(x)-(sinx)logx}+(sinx)^(tanx).{1+(log sinx)sec^(2)x}.

If y=sqrt(sinx+sqrt(sinx+sqrt(sinx+ tooo))),p rov et h a t(dy)/(dx)=(cosx)/(2y-1)

If y=e^(sinx)+(tanx)^(x)," prove that "(dy)/(dx)=e^(sinx)cosx+(tanx)^(x)[2x" cosec "2x+log tanx].

If y=(sinx)/(1+(cosx)/(1+(sinx)/(1+(cosx)/(1+ ddotto oo)))) , prove that (dy)/(dx)=((1+y)cosx+ysinx)/(1+2y+cosx-sinx)

If y=(sinx)^(sinx)^(((sinx)dotoo)) , then (dy)/(dx) is equal to.........

"If "y=sqrt(cosx+sqrt(cosx+sqrt(cosx+...oo)))", prove that "(dy)/(dx)=(sinx)/((2y-1)).