Home
Class 12
MATHS
dy/dx(cosec^(-1)x) = ....

`dy/dx(cosec^(-1)x)` = __________.

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) of \( y = \csc^{-1}(x) \), we can follow these steps: ### Step 1: Set \( y = \csc^{-1}(x) \) Let \( y = \csc^{-1}(x) \). This implies that \( \csc(y) = x \). ### Step 2: Differentiate both sides Differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(\csc(y)) = \frac{d}{dx}(x) \] Using the chain rule, we have: \[ -\csc(y) \cot(y) \frac{dy}{dx} = 1 \] ### Step 3: Solve for \( \frac{dy}{dx} \) Rearranging the equation gives: \[ \frac{dy}{dx} = -\frac{1}{\csc(y) \cot(y)} \] ### Step 4: Express \( \csc(y) \) and \( \cot(y) \) in terms of \( x \) Since \( \csc(y) = x \), we can substitute: \[ \frac{dy}{dx} = -\frac{1}{x \cot(y)} \] ### Step 5: Find \( \cot(y) \) To find \( \cot(y) \), we can use the identity: \[ \cot(y) = \frac{\cos(y)}{\sin(y)} \] From the definition of cosecant, we know: \[ \sin(y) = \frac{1}{\csc(y)} = \frac{1}{x} \] Using the Pythagorean identity, we can find \( \cos(y) \): \[ \cos^2(y) + \sin^2(y) = 1 \implies \cos^2(y) = 1 - \sin^2(y) = 1 - \left(\frac{1}{x}\right)^2 = \frac{x^2 - 1}{x^2} \] Thus, \[ \cos(y) = \sqrt{\frac{x^2 - 1}{x^2}} = \frac{\sqrt{x^2 - 1}}{x} \] Now substituting into \( \cot(y) \): \[ \cot(y) = \frac{\cos(y)}{\sin(y)} = \frac{\frac{\sqrt{x^2 - 1}}{x}}{\frac{1}{x}} = \sqrt{x^2 - 1} \] ### Step 6: Substitute \( \cot(y) \) back into \( \frac{dy}{dx} \) Now substituting back, we have: \[ \frac{dy}{dx} = -\frac{1}{x \sqrt{x^2 - 1}} \] ### Final Answer Thus, the derivative of \( y = \csc^{-1}(x) \) is: \[ \frac{dy}{dx} = -\frac{1}{x \sqrt{x^2 - 1}} \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (TRUE/FALSE QUESTION)|3 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (VERY SHORT ANSWER TYPE QUESTIONS)|35 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (MULTIPLE CHOICE QUESTIONS)|30 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Prove that (d)/(dx)("cosec"^(-1)x)=(-1)/(|x|sqrt(x^(2)-1)) , where x in R-[-1,1] .

(d)/(dx) (cosec x+ cot x )=

Find the particular solution of the differential equation x(dy)/(dx)=y+x cosec ((y)/(x))=0; given that y=0 when x=1

The solution of the differential equation x^(4)(dy)/(dx)+x^(3)y+"cosec"(xy)=0 is equal to

Find the particular solution,satisfying the given condition,for the following differential equation.(dy)/(dx)-(y)/(x)+ cosec ((y)/(x))=0;y=0 when x=1

Solution of the differential equation 1+(dy)/(dx)+cosec(x+y)=0 is

Solve the following differential equations (dy)/(dx)=cosec^(2)x+3x^(2)

int(dx)/(sqrt(1+csc^(2)x))=