Home
Class 12
MATHS
d/dx(sqrt(e^(sqrtx))) = ....

`d/dx(sqrt(e^(sqrtx)))` = ___________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \frac{d}{dx} \left( \sqrt{e^{\sqrt{x}}} \right) \), we will use the chain rule and the properties of derivatives. Here’s a step-by-step solution: ### Step 1: Rewrite the expression We start by rewriting the square root in exponential form: \[ \sqrt{e^{\sqrt{x}}} = (e^{\sqrt{x}})^{1/2} = e^{\frac{1}{2} \sqrt{x}} \] ### Step 2: Differentiate using the chain rule Now, we differentiate \( e^{\frac{1}{2} \sqrt{x}} \): \[ \frac{d}{dx} \left( e^{\frac{1}{2} \sqrt{x}} \right) = e^{\frac{1}{2} \sqrt{x}} \cdot \frac{d}{dx} \left( \frac{1}{2} \sqrt{x} \right) \] ### Step 3: Differentiate \( \frac{1}{2} \sqrt{x} \) Next, we differentiate \( \frac{1}{2} \sqrt{x} \): \[ \frac{d}{dx} \left( \frac{1}{2} \sqrt{x} \right) = \frac{1}{2} \cdot \frac{1}{2\sqrt{x}} = \frac{1}{4\sqrt{x}} \] ### Step 4: Substitute back into the derivative Now we substitute this result back into our derivative: \[ \frac{d}{dx} \left( e^{\frac{1}{2} \sqrt{x}} \right) = e^{\frac{1}{2} \sqrt{x}} \cdot \frac{1}{4\sqrt{x}} \] ### Step 5: Final expression Thus, the final result for the derivative is: \[ \frac{d}{dx} \left( \sqrt{e^{\sqrt{x}}} \right) = \frac{1}{4\sqrt{x}} e^{\frac{1}{2} \sqrt{x}} \] ### Final Answer: \[ \frac{d}{dx} \left( \sqrt{e^{\sqrt{x}}} \right) = \frac{1}{4\sqrt{x}} e^{\frac{1}{2} \sqrt{x}} \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (TRUE/FALSE QUESTION)|3 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (VERY SHORT ANSWER TYPE QUESTIONS)|35 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (MULTIPLE CHOICE QUESTIONS)|30 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)(sqrt((x^(2)+3)))

(d)/(dx)(sqrt(x sin x))=?

d/(dx)e^(log sqrt(x)}=

(d)/(dx)[(tan sqrt(5x))] =

(d)/(dx)(sqrt(x)+(1)/(sqrt(x)))^(2) =

d/(dx) [tan^(-1)(sqrt(x))] =

d/(dx)(e^sqrt(1-x^2).tanx)=

(d)/(dx)(ln sin sqrt(x))=

d/(dx)(sqrt(x))=………………………. .

d/(dx)[log (sqrt(sin sqrt(e^(x))))]=