Home
Class 12
MATHS
Evaluate the following integrals : int...

Evaluate the following integrals :
`int (sin x+cos x+x^(5//2))dx.`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int (\sin x + \cos x + x^{5/2}) \, dx \), we can break it down into separate integrals. ### Step-by-Step Solution: 1. **Separate the Integral:** \[ \int (\sin x + \cos x + x^{5/2}) \, dx = \int \sin x \, dx + \int \cos x \, dx + \int x^{5/2} \, dx \] 2. **Integrate \( \sin x \):** The integral of \( \sin x \) is: \[ \int \sin x \, dx = -\cos x + C_1 \] 3. **Integrate \( \cos x \):** The integral of \( \cos x \) is: \[ \int \cos x \, dx = \sin x + C_2 \] 4. **Integrate \( x^{5/2} \):** Using the power rule for integration, we have: \[ \int x^{5/2} \, dx = \frac{x^{5/2 + 1}}{5/2 + 1} + C_3 = \frac{x^{7/2}}{7/2} + C_3 = \frac{2}{7} x^{7/2} + C_3 \] 5. **Combine the Results:** Now, we combine all the results from the integrals: \[ \int (\sin x + \cos x + x^{5/2}) \, dx = -\cos x + \sin x + \frac{2}{7} x^{7/2} + C \] where \( C = C_1 + C_2 + C_3 \) is the constant of integration. 6. **Final Answer:** Thus, the final result is: \[ \int (\sin x + \cos x + x^{5/2}) \, dx = -\cos x + \sin x + \frac{2}{7} x^{7/2} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(a) LONG ANSWER TYPE QUESTION|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(b) SHORT ANSWER TYPE Frequently Asked Question FAQ|11 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int (1-sinx )/(x+cos x) dx

Evaluate the following integrals int (dx)/(1+sin x+cos x)

Evaluate the following integrals: int(cos x)/(1-cos x)dx

Evaluate the following integrals: int (1)/(sin^(2)x cos^(2)x) dx

Evaluate the following Integrals : int (dx)/(sin x(3+1 cos x))dx

Evaluate the following integrals: int (sinx)/(sin2x)dx

Evaluate the following integrals: int cos^(-1)(sin x)dx

Evaluate the following integrals : int(sin^(2)x)/(1+cos x)dx

Evaluate the following integrals: int (1-cos x)/(sin x) dx

Evaluate the following integration int (sin 4x)/(sin x)dx