Home
Class 12
MATHS
If f'(x)=x-3/x^2,f(1)=11/2, find f(x)....

If `f'(x)=x-3/x^2,f(1)=11/2`, find f(x).

Text Solution

AI Generated Solution

The correct Answer is:
To find the function \( f(x) \) given that \( f'(x) = \frac{x - 3}{x^2} \) and \( f(1) = \frac{11}{2} \), we will follow these steps: ### Step 1: Integrate \( f'(x) \) We start with the derivative: \[ f'(x) = \frac{x - 3}{x^2} \] We can rewrite this as: \[ f'(x) = \frac{x}{x^2} - \frac{3}{x^2} = \frac{1}{x} - \frac{3}{x^2} \] Now, we integrate \( f'(x) \): \[ f(x) = \int \left( \frac{1}{x} - \frac{3}{x^2} \right) dx \] ### Step 2: Perform the Integration Integrating term by term: 1. The integral of \( \frac{1}{x} \) is \( \ln |x| \). 2. The integral of \( -\frac{3}{x^2} \) is \( 3 \cdot \frac{1}{x} \) (since \( \int x^{-2} dx = -\frac{1}{x} \)). Thus, we have: \[ f(x) = \ln |x| + 3 \cdot \left(-\frac{1}{x}\right) + C = \ln |x| + \frac{3}{x} + C \] ### Step 3: Use the Initial Condition to Find \( C \) We know that \( f(1) = \frac{11}{2} \). Plugging in \( x = 1 \): \[ f(1) = \ln |1| + \frac{3}{1} + C = 0 + 3 + C = C + 3 \] Setting this equal to \( \frac{11}{2} \): \[ C + 3 = \frac{11}{2} \] ### Step 4: Solve for \( C \) To find \( C \): \[ C = \frac{11}{2} - 3 = \frac{11}{2} - \frac{6}{2} = \frac{5}{2} \] ### Step 5: Write the Final Expression for \( f(x) \) Now substituting \( C \) back into our expression for \( f(x) \): \[ f(x) = \ln |x| + \frac{3}{x} + \frac{5}{2} \] Thus, the final answer is: \[ \boxed{f(x) = \ln |x| + \frac{3}{x} + \frac{5}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(b) SHORT ANSWER TYPE Frequently Asked Question FAQ|11 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(b) SHORT ANSWER TYPE|14 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(a) SHORT ANSWER TYPE|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

If f'(x) = x-3/x^2,f(1)=11/2 , then f(x)=……..

If f'(x)= x-(3)/(x^(3)), f(1) = (11)/(2) find f(x)

If f'(x)=x-(1)/(x^(2)) and f(1)=(1)/(2), find f(x)

If f'(x)=4x^3-3x^2+2x+k and f(0)=1, f(1)=4 find f(x)

If f(x)=2x^(3)-13x^(2)+17x+12; Find f(-1) and f(2)

If f(x)=x^(3)+3x^(2)-2x+4, find f(-2)+f(2)-f(0)

If f(x)=2x+|x-x^(2)|,-1<=x<=1 ,then f(x) is is(a) continuous but not differentiable in [-1,1]

If f(x)=x^(2), find (f(1.1)-f(1))/(1.1-1)