Home
Class 12
MATHS
int e^x sin 2x dx...

`int e^x sin 2x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int e^x \sin(2x) \, dx \), we will use the method of integration by parts. Let's break it down step by step. ### Step 1: Set up the integration by parts We will use the formula for integration by parts: \[ \int u \, dv = uv - \int v \, du \] Here, we choose: - \( u = e^x \) (which means \( du = e^x \, dx \)) - \( dv = \sin(2x) \, dx \) (which means \( v = -\frac{1}{2} \cos(2x) \)) ### Step 2: Apply the integration by parts formula Substituting into the integration by parts formula: \[ I = e^x \left(-\frac{1}{2} \cos(2x)\right) - \int \left(-\frac{1}{2} \cos(2x)\right) e^x \, dx \] This simplifies to: \[ I = -\frac{1}{2} e^x \cos(2x) + \frac{1}{2} \int e^x \cos(2x) \, dx \] ### Step 3: Set up the new integral Let’s denote the new integral as \( J = \int e^x \cos(2x) \, dx \). Now we have: \[ I = -\frac{1}{2} e^x \cos(2x) + \frac{1}{2} J \] ### Step 4: Solve the new integral \( J \) We will again use integration by parts for \( J \): - Choose \( u = e^x \) (thus \( du = e^x \, dx \)) - Choose \( dv = \cos(2x) \, dx \) (thus \( v = \frac{1}{2} \sin(2x) \)) Applying the integration by parts formula: \[ J = e^x \left(\frac{1}{2} \sin(2x)\right) - \int \left(\frac{1}{2} \sin(2x)\right) e^x \, dx \] This simplifies to: \[ J = \frac{1}{2} e^x \sin(2x) - \frac{1}{2} I \] ### Step 5: Substitute \( J \) back into the equation for \( I \) Now we substitute \( J \) back into the equation for \( I \): \[ I = -\frac{1}{2} e^x \cos(2x) + \frac{1}{2} \left(\frac{1}{2} e^x \sin(2x) - \frac{1}{2} I\right) \] This simplifies to: \[ I = -\frac{1}{2} e^x \cos(2x) + \frac{1}{4} e^x \sin(2x) - \frac{1}{4} I \] ### Step 6: Combine like terms Now, we can combine the terms involving \( I \): \[ I + \frac{1}{4} I = -\frac{1}{2} e^x \cos(2x) + \frac{1}{4} e^x \sin(2x) \] This simplifies to: \[ \frac{5}{4} I = -\frac{1}{2} e^x \cos(2x) + \frac{1}{4} e^x \sin(2x) \] ### Step 7: Solve for \( I \) Now, we can solve for \( I \): \[ I = \frac{4}{5} \left(-\frac{1}{2} e^x \cos(2x) + \frac{1}{4} e^x \sin(2x)\right) \] This simplifies to: \[ I = -\frac{2}{5} e^x \cos(2x) + \frac{1}{5} e^x \sin(2x) \] ### Step 8: Final answer Thus, the integral is: \[ I = \frac{1}{5} e^x \sin(2x) - \frac{2}{5} e^x \cos(2x) + C \] where \( C \) is the constant of integration.
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(f) FAQ|5 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(g) SHORT TYPE QUESTION|13 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (II)|1 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Integrate : int e^x sin x dx.

Integrate: int e^x sin^2 x dx.

int e^(2x) sin x dx

int e^(x) sin x dx .

(i) int x^2 sin x dx (ii) int x^2 sin 2x dx

int_(0)^(pi) e^(x) sin 2 x dx=

Evaluate int e^(2x) sin 3x dx .

int e^x sin(e^x) dx=

(i) int e^(3x) cos 5x dx (ii) int e^(3x) sin 4x dx

int e^(2x) sin x cos x dx