Home
Class 12
MATHS
int e^x cos 3x dx...

`int e^x cos 3x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^x \cos(3x) \, dx \), we will use the method of integration by parts. ### Step 1: Set up the integral Let: \[ I = \int e^x \cos(3x) \, dx \] ### Step 2: Apply integration by parts We choose: - \( u = e^x \) (thus \( du = e^x \, dx \)) - \( dv = \cos(3x) \, dx \) (thus \( v = \frac{1}{3} \sin(3x) \)) Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] we have: \[ I = e^x \cdot \frac{1}{3} \sin(3x) - \int \frac{1}{3} \sin(3x) e^x \, dx \] This simplifies to: \[ I = \frac{1}{3} e^x \sin(3x) - \frac{1}{3} \int e^x \sin(3x) \, dx \] ### Step 3: Set up the new integral Let: \[ J = \int e^x \sin(3x) \, dx \] Then we can rewrite \( I \): \[ I = \frac{1}{3} e^x \sin(3x) - \frac{1}{3} J \] ### Step 4: Apply integration by parts to \( J \) Now, we will apply integration by parts to \( J \): - \( u = e^x \) (thus \( du = e^x \, dx \)) - \( dv = \sin(3x) \, dx \) (thus \( v = -\frac{1}{3} \cos(3x) \)) Using the integration by parts formula again: \[ J = e^x \cdot \left(-\frac{1}{3} \cos(3x)\right) - \int -\frac{1}{3} \cos(3x) e^x \, dx \] This simplifies to: \[ J = -\frac{1}{3} e^x \cos(3x) + \frac{1}{3} \int e^x \cos(3x) \, dx \] Thus: \[ J = -\frac{1}{3} e^x \cos(3x) + \frac{1}{3} I \] ### Step 5: Substitute \( J \) back into \( I \) Now substitute \( J \) back into the equation for \( I \): \[ I = \frac{1}{3} e^x \sin(3x) - \frac{1}{3} \left( -\frac{1}{3} e^x \cos(3x) + \frac{1}{3} I \right) \] This simplifies to: \[ I = \frac{1}{3} e^x \sin(3x) + \frac{1}{9} e^x \cos(3x) - \frac{1}{9} I \] ### Step 6: Solve for \( I \) Now, combine like terms: \[ I + \frac{1}{9} I = \frac{1}{3} e^x \sin(3x) + \frac{1}{9} e^x \cos(3x) \] \[ \frac{10}{9} I = \frac{1}{3} e^x \sin(3x) + \frac{1}{9} e^x \cos(3x) \] Multiply both sides by \( \frac{9}{10} \): \[ I = \frac{3}{10} e^x \sin(3x) + \frac{1}{10} e^x \cos(3x) \] ### Step 7: Final answer Thus, the integral is: \[ \int e^x \cos(3x) \, dx = \frac{1}{10} e^x (3 \sin(3x) + \cos(3x)) + C \] where \( C \) is the constant of integration.
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(f) FAQ|5 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(g) SHORT TYPE QUESTION|13 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (II)|1 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int e^x cos 2x dx

int e^(x)cos x*dx

(i) int e^(3x) cos 5x dx (ii) int e^(3x) sin 4x dx

int cos x cos 3x dx

int e^x( cos x+sinx)dx

int (e ^ (cos x) (x sin ^ (3) x + cos x)) / (sin ^ (2) x) dx

(i) int sin^2x cos^3x dx (ii) int sin^3 x cos^2 x dx (iii) int sin^3 x cos^3 x dx

int cos x cos3x*dx

int e^(2x) sin x cos x dx