Home
Class 12
MATHS
(i) int e^(3x) cos 5x dx (ii) int e^(3...

(i) `int e^(3x) cos 5x dx`
(ii) `int e^(3x) sin 4x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integrals given in the question, we will use the standard formulas for the integration of the product of an exponential function and trigonometric functions. ### (i) Integral of \( e^{3x} \cos(5x) \, dx \) 1. **Identify the parameters:** - Here, \( a = 3 \) and \( b = 5 \). 2. **Use the formula for integration:** \[ \int e^{ax} \cos(bx) \, dx = \frac{e^{ax}}{a^2 + b^2} (a \cos(bx) + b \sin(bx)) + C \] Substituting \( a \) and \( b \): \[ \int e^{3x} \cos(5x) \, dx = \frac{e^{3x}}{3^2 + 5^2} (3 \cos(5x) + 5 \sin(5x)) + C \] 3. **Calculate \( a^2 + b^2 \):** \[ 3^2 + 5^2 = 9 + 25 = 34 \] 4. **Substitute back into the formula:** \[ \int e^{3x} \cos(5x) \, dx = \frac{e^{3x}}{34} (3 \cos(5x) + 5 \sin(5x)) + C \] ### Final Result for (i): \[ \int e^{3x} \cos(5x) \, dx = \frac{e^{3x}}{34} (3 \cos(5x) + 5 \sin(5x)) + C \] --- ### (ii) Integral of \( e^{3x} \sin(4x) \, dx \) 1. **Identify the parameters:** - Here, \( a = 3 \) and \( b = 4 \). 2. **Use the formula for integration:** \[ \int e^{ax} \sin(bx) \, dx = \frac{e^{ax}}{a^2 + b^2} (a \sin(bx) - b \cos(bx)) + C \] Substituting \( a \) and \( b \): \[ \int e^{3x} \sin(4x) \, dx = \frac{e^{3x}}{3^2 + 4^2} (3 \sin(4x) - 4 \cos(4x)) + C \] 3. **Calculate \( a^2 + b^2 \):** \[ 3^2 + 4^2 = 9 + 16 = 25 \] 4. **Substitute back into the formula:** \[ \int e^{3x} \sin(4x) \, dx = \frac{e^{3x}}{25} (3 \sin(4x) - 4 \cos(4x)) + C \] ### Final Result for (ii): \[ \int e^{3x} \sin(4x) \, dx = \frac{e^{3x}}{25} (3 \sin(4x) - 4 \cos(4x)) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(f) FAQ|5 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(g) SHORT TYPE QUESTION|13 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (II)|1 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int e^(3x)dx

int sin^3x cos^5x dx

int e^(x)cos e^(x)dx

int e^x cos 3x dx

Evaluate: (i) int x^(3)cos x^(4)dx(ii)int x^(3)sin x^(4)dx

int e^(x)" sin "e^(x)dx

(i) int x^(2) " cos x dx " " "(ii) int x^(2) e^(3x) " dx "

Evaluate the following intergrals (i) int_(15)^(30) cos (4x - 3)dx (ii) int_0^(30) cos 5 x dx (iii) int_(0)^(30) cos 5 x dx (iv) int_(0)^(10) sec^2 (3x +6)dx

(i) int sin^2x cos^3x dx (ii) int sin^3 x cos^2 x dx (iii) int sin^3 x cos^3 x dx