Home
Class 12
MATHS
int e^(2x) sin x dx...

`int e^(2x) sin x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^{2x} \sin x \, dx \), we can use the method of integration by parts or apply a standard result for integrals of the form \( \int e^{ax} \sin(bx) \, dx \). Here, we will use the standard result approach. ### Step-by-Step Solution: 1. **Identify Parameters**: We have \( a = 2 \) and \( b = 1 \) from the integral \( \int e^{2x} \sin x \, dx \). 2. **Use the Standard Result**: The standard result for the integral \( \int e^{ax} \sin(bx) \, dx \) is given by: \[ \int e^{ax} \sin(bx) \, dx = \frac{e^{ax}}{a^2 + b^2} (a \sin(bx) - b \cos(bx)) + C \] Substituting \( a = 2 \) and \( b = 1 \) into the formula, we get: \[ a^2 + b^2 = 2^2 + 1^2 = 4 + 1 = 5 \] 3. **Substitute into the Formula**: Now substituting \( a \) and \( b \) into the formula: \[ \int e^{2x} \sin x \, dx = \frac{e^{2x}}{5} (2 \sin x - 1 \cos x) + C \] 4. **Simplify the Expression**: This simplifies to: \[ \int e^{2x} \sin x \, dx = \frac{e^{2x}}{5} (2 \sin x - \cos x) + C \] ### Final Answer: Thus, the final result is: \[ \int e^{2x} \sin x \, dx = \frac{e^{2x}}{5} (2 \sin x - \cos x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(f) FAQ|5 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(g) SHORT TYPE QUESTION|13 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (II)|1 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate int e^(2x) sin 3x dx .

int e^(x) sin x dx .

(i) int e^(3x) cos 5x dx (ii) int e^(3x) sin 4x dx

int e^x sin 2x dx

Integrate : int e^x sin x dx.

int e^(2x) sin x cos x dx

Integrate: int e^x sin^2 x dx.

" 3.(a) "int e^(x)sin e^(x)dx

Evaluate: int e^(2x)sin(3x+1)dx

int_(0)^(pi) e^(x) sin 2 x dx=