Home
Class 12
MATHS
int e^(2x) sin x cos x dx...

`int e^(2x) sin x cos x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int e^{2x} \sin x \cos x \, dx \), we can follow these steps: ### Step 1: Simplify the integrand using a trigonometric identity We know that: \[ \sin 2\theta = 2 \sin \theta \cos \theta \] Thus, we can rewrite \( \sin x \cos x \) as: \[ \sin x \cos x = \frac{1}{2} \sin 2x \] Now, substituting this into the integral, we have: \[ I = \int e^{2x} \sin x \cos x \, dx = \int e^{2x} \cdot \frac{1}{2} \sin 2x \, dx \] This simplifies to: \[ I = \frac{1}{2} \int e^{2x} \sin 2x \, dx \] ### Step 2: Use integration by parts or a standard formula We can use the standard formula for the integral of the form \( \int e^{ax} \sin bx \, dx \): \[ \int e^{ax} \sin bx \, dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + C \] In our case, \( a = 2 \) and \( b = 2 \). ### Step 3: Apply the formula Substituting \( a = 2 \) and \( b = 2 \) into the formula: \[ \int e^{2x} \sin 2x \, dx = \frac{e^{2x}}{2^2 + 2^2} (2 \sin 2x - 2 \cos 2x) + C \] Calculating \( 2^2 + 2^2 = 4 + 4 = 8 \), we have: \[ \int e^{2x} \sin 2x \, dx = \frac{e^{2x}}{8} (2 \sin 2x - 2 \cos 2x) + C \] ### Step 4: Substitute back into the integral Now, substituting this back into our expression for \( I \): \[ I = \frac{1}{2} \cdot \frac{e^{2x}}{8} (2 \sin 2x - 2 \cos 2x) + C \] This simplifies to: \[ I = \frac{e^{2x}}{16} (2 \sin 2x - 2 \cos 2x) + C \] ### Step 5: Final simplification Factoring out the 2: \[ I = \frac{e^{2x}}{16} \cdot 2 (\sin 2x - \cos 2x) + C \] Thus: \[ I = \frac{e^{2x}}{8} (\sin 2x - \cos 2x) + C \] ### Final Answer \[ \int e^{2x} \sin x \cos x \, dx = \frac{e^{2x}}{8} (\sin 2x - \cos 2x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(f) FAQ|5 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(g) SHORT TYPE QUESTION|13 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (II)|1 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int e^(2x) sin x dx

int e^(-x)(sin x+cos x)dx

int e^x sin 2x dx

int e^(2x)(-sin x+2cos x)dx

int e^(x)sin x cos x cos2x cos4x.dx

int_(0)^(pi//2) e^(x) (sin x + cos x) dx

Evaluate: (i) int e^(x)((1)/(x)-(1)/(x^(2)))dx (ii) int e^(x)(sin x+cos x)dx

int(e^(x)+2sin x-3cos x)dx

int e^x cos 2x dx