Home
Class 12
MATHS
int (log x)/(1+logx)^2 dx...

`int (log x)/(1+logx)^2 dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\log x}{(1 + \log x)^2} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We can express the integral as: \[ \int \frac{\log x}{(1 + \log x)^2} \, dx = \int \frac{1 + \log x - 1}{(1 + \log x)^2} \, dx \] This simplifies to: \[ \int \left( \frac{1}{1 + \log x} - \frac{1}{(1 + \log x)^2} \right) \, dx \] ### Step 2: Split the Integral Now we can split the integral into two parts: \[ \int \frac{1}{1 + \log x} \, dx - \int \frac{1}{(1 + \log x)^2} \, dx \] ### Step 3: Solve the First Integral For the first integral \( \int \frac{1}{1 + \log x} \, dx \), we can use substitution. Let: \[ u = 1 + \log x \implies du = \frac{1}{x} \, dx \implies dx = x \, du = e^{u-1} \, du \] Thus: \[ \int \frac{1}{u} e^{u-1} \, du \] This integral can be solved using integration by parts or recognized as a standard integral. ### Step 4: Solve the Second Integral For the second integral \( \int \frac{1}{(1 + \log x)^2} \, dx \), we can use the same substitution \( u = 1 + \log x \): \[ \int \frac{1}{u^2} e^{u-1} \, du \] This can also be solved using integration techniques. ### Step 5: Combine the Results After evaluating both integrals, we combine the results to get the final answer. ### Final Result The final result of the integral \( \int \frac{\log x}{(1 + \log x)^2} \, dx \) is: \[ \frac{x}{1 + \log x} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7 (h) SHORT ANSWER TYPE QUESTION|3 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(h) FAQ|5 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(g) SHORT TYPE QUESTION|13 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(logx)/((1+logx)^2)\ dx

Evaluate int(logx)/((1+logx)^(2))dx .

Evaluate int((log x-1)/(1+(logx)^(2)))^(2)dx

int (2 log x)/(x[2(logx)^(2)-logx-3])dx

" "int(log x)/((1+x)^(2))dx

int7^(x logx)(1+logx)dx=

int(2log x)/(x[2(log x)^(2)-logx-3])dx

int(logx)/(x(1+logx)(2+logx))dx=