Home
Class 12
MATHS
int{(1)/((logx))-(1)/((logx)^(2))}dx=?...

`int{(1)/((logx))-(1)/((logx)^(2))}dx=?`

Text Solution

Verified by Experts

The correct Answer is:
`x/(log x)+c`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7 (h) SHORT ANSWER TYPE QUESTION|3 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(h) FAQ|5 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(g) SHORT TYPE QUESTION|13 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int{(1)/(logx)-(1)/((log)^(2))}dx

int_(0)^(e^(2)){(1)/((logx))-(1)/((logx)^(2))}dx

Evaluate : int[(1)/(logx)-(1)/((log x)^(2))]dx

int(logx)^(2)dx=?

Evaluate : int {log(logx)+(1)/((logx)^(2))}dx

Evaluate the following integrals: int{log(logx)+(1)/((logx)^(2))}dx

int(1)/(x(logx))dx=?

int{log(logx)+(1)/((logx)^(2))}dx=x {f (x)-g(x)}+C , then

int1/(x(1-logx)^(2))dx=