Home
Class 12
MATHS
int (dx)/((x+1)(2x+1)) (ii) int (x-1)/...

`int (dx)/((x+1)(2x+1))`
(ii) `int (x-1)/((x-2)(x-3)) dx`.

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given integrals step by step. ### Part (i): \(\int \frac{dx}{(x+1)(2x+1)}\) 1. **Rewrite the integrand**: We can use partial fraction decomposition to express the integrand in a simpler form. We want to find constants \(A\) and \(B\) such that: \[ \frac{1}{(x+1)(2x+1)} = \frac{A}{x+1} + \frac{B}{2x+1} \] Multiplying through by the denominator \((x+1)(2x+1)\) gives: \[ 1 = A(2x + 1) + B(x + 1) \] 2. **Expand and collect terms**: \[ 1 = (2A + B)x + (A + B) \] This gives us the system of equations: \[ 2A + B = 0 \quad \text{(1)} \] \[ A + B = 1 \quad \text{(2)} \] 3. **Solve the system of equations**: From equation (1), we can express \(B\) in terms of \(A\): \[ B = -2A \] Substituting into equation (2): \[ A - 2A = 1 \implies -A = 1 \implies A = -1 \] Then substituting back to find \(B\): \[ B = -2(-1) = 2 \] 4. **Rewrite the integral**: Thus, we have: \[ \frac{1}{(x+1)(2x+1)} = \frac{-1}{x+1} + \frac{2}{2x+1} \] Therefore, the integral becomes: \[ \int \frac{dx}{(x+1)(2x+1)} = \int \left( \frac{-1}{x+1} + \frac{2}{2x+1} \right) dx \] 5. **Integrate term by term**: \[ = -\ln|x+1| + 2 \cdot \frac{1}{2} \ln|2x+1| + C \] \[ = -\ln|x+1| + \ln|2x+1| + C \] 6. **Combine logarithms**: \[ = \ln\left|\frac{2x+1}{x+1}\right| + C \] ### Final Answer for Part (i): \[ \int \frac{dx}{(x+1)(2x+1)} = \ln\left|\frac{2x+1}{x+1}\right| + C \] --- ### Part (ii): \(\int \frac{x-1}{(x-2)(x-3)} dx\) 1. **Rewrite the integrand**: Again, we will use partial fraction decomposition: \[ \frac{x-1}{(x-2)(x-3)} = \frac{A}{x-2} + \frac{B}{x-3} \] Multiplying through by the denominator \((x-2)(x-3)\) gives: \[ x - 1 = A(x - 3) + B(x - 2) \] 2. **Expand and collect terms**: \[ x - 1 = (A + B)x + (-3A - 2B) \] This gives us the system of equations: \[ A + B = 1 \quad \text{(1)} \] \[ -3A - 2B = -1 \quad \text{(2)} \] 3. **Solve the system of equations**: From equation (1), we can express \(B\) in terms of \(A\): \[ B = 1 - A \] Substituting into equation (2): \[ -3A - 2(1 - A) = -1 \implies -3A - 2 + 2A = -1 \implies -A - 2 = -1 \implies -A = 1 \implies A = -1 \] Then substituting back to find \(B\): \[ B = 1 - (-1) = 2 \] 4. **Rewrite the integral**: Thus, we have: \[ \frac{x-1}{(x-2)(x-3)} = \frac{-1}{x-2} + \frac{2}{x-3} \] Therefore, the integral becomes: \[ \int \frac{x-1}{(x-2)(x-3)} dx = \int \left( \frac{-1}{x-2} + \frac{2}{x-3} \right) dx \] 5. **Integrate term by term**: \[ = -\ln|x-2| + 2\ln|x-3| + C \] 6. **Combine logarithms**: \[ = \ln\left|\frac{(x-3)^2}{x-2}\right| + C \] ### Final Answer for Part (ii): \[ \int \frac{x-1}{(x-2)(x-3)} dx = \ln\left|\frac{(x-3)^2}{x-2}\right| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(i) LONG ANSWER QUESTION TYPE (II)|3 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(j) FAQ|7 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(i) SHORT ANSWER TYPE QUESTIONS|4 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int 1/((x-1)(x+2)(2x-3))dx

int((x-1))/((x-1)^(2)(2x+3))dx

(i) int (1)/(x(x+1)^(2))dx (ii) int (1)/((x+1)^(2)(x-1))dx

(i) int_1^2 (dx)/((x+1)(x+2)) (ii) int_1^2 (x+3)/(x(x+2) dx

Evaluate : (i) int(2x)/((2x+1)^(2))dx (ii) int((2+3x))/((3-2x))dx

(i) int 1/((x^2+1)(x^2+4)) dx (ii) int 1/((x^2+1)(x^2+2)) dx

Evaluate: (i) (x^(2)+3x-1)/((x+1)^(2))dx (ii) int(2x-1)/((x-1)^(2))dx

int (2x)/(x^2+3x+2) dx (ii) int x/((x+1)(x+2)) dx

(i) int(1)/((1+cos2x))dx , (ii) int (1)/((1-cos2x)) dx