Home
Class 12
MATHS
int (dx)/((x+1)(x+2)(x+3))...

`int (dx)/((x+1)(x+2)(x+3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{dx}{(x+1)(x+2)(x+3)}, \] we will use the method of partial fractions. ### Step 1: Set up the partial fraction decomposition We can express the integrand as a sum of simpler fractions: \[ \frac{1}{(x+1)(x+2)(x+3)} = \frac{A}{x+1} + \frac{B}{x+2} + \frac{C}{x+3}. \] ### Step 2: Multiply through by the denominator To eliminate the denominators, multiply both sides by \((x+1)(x+2)(x+3)\): \[ 1 = A(x+2)(x+3) + B(x+1)(x+3) + C(x+1)(x+2). \] ### Step 3: Expand the right-hand side Expanding the right-hand side gives: \[ 1 = A(x^2 + 5x + 6) + B(x^2 + 4x + 3) + C(x^2 + 3x + 2). \] ### Step 4: Combine like terms Combining like terms, we have: \[ 1 = (A + B + C)x^2 + (5A + 4B + 3C)x + (6A + 3B + 2C). \] ### Step 5: Set up a system of equations Since this must hold for all \(x\), we can equate coefficients: 1. \(A + B + C = 0\) (coefficient of \(x^2\)) 2. \(5A + 4B + 3C = 0\) (coefficient of \(x\)) 3. \(6A + 3B + 2C = 1\) (constant term) ### Step 6: Solve the system of equations From equation (1), we can express \(C\) in terms of \(A\) and \(B\): \[ C = -A - B. \] Substituting \(C\) into equations (2) and (3): 1. \(5A + 4B + 3(-A - B) = 0\) simplifies to \(2A + B = 0\) or \(B = -2A\). 2. Substituting \(B = -2A\) into equation (3): \[ 6A + 3(-2A) + 2(-A - (-2A)) = 1 \implies 6A - 6A + 2A = 1 \implies 2A = 1 \implies A = \frac{1}{2}. \] Now substituting \(A\) back to find \(B\) and \(C\): \[ B = -2 \cdot \frac{1}{2} = -1, \] \[ C = -\frac{1}{2} - (-1) = \frac{1}{2}. \] ### Step 7: Write the partial fraction decomposition Now we have: \[ \frac{1}{(x+1)(x+2)(x+3)} = \frac{1/2}{x+1} - \frac{1}{x+2} + \frac{1/2}{x+3}. \] ### Step 8: Integrate each term Now we can integrate each term separately: \[ \int \left( \frac{1/2}{x+1} - \frac{1}{x+2} + \frac{1/2}{x+3} \right) dx = \frac{1}{2} \ln|x+1| - \ln|x+2| + \frac{1}{2} \ln|x+3| + C. \] ### Step 9: Combine the logarithms Combining the logarithmic terms, we have: \[ \frac{1}{2} \ln|x+1| + \frac{1}{2} \ln|x+3| - \ln|x+2| = \ln\left(\sqrt{(x+1)(x+3)}\right) - \ln|x+2| = \ln\left(\frac{\sqrt{(x+1)(x+3)}}{|x+2|}\right). \] ### Final Answer Thus, the integral evaluates to: \[ \int \frac{dx}{(x+1)(x+2)(x+3)} = \ln\left(\frac{\sqrt{(x+1)(x+3)}}{|x+2|}\right) + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(i) LONG ANSWER QUESTION TYPE (II)|3 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(j) FAQ|7 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(i) SHORT ANSWER TYPE QUESTIONS|4 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int(3x)/((x-1)(x-2)(x-3))dx

int(x^(2))/((x-1)(x-2)(x-3))dx

int 1/((x-1)(x+2)(2x-3))dx

int(3x-2)/((x+1)^(2)(x+3))dx

int((x-1))/((x-1)^(2)(2x+3))dx

int((x-1)(dx)/((2x+1)(x-2)(x-3))

int((x-1)dx)/((2x+1)(x-2)(x-3))

int (dx)/((x+1)(2x+1)) (ii) int (x-1)/((x-2)(x-3)) dx .

(i) int_1^2 (dx)/((x+1)(x+2)) (ii) int_1^2 (x+3)/(x(x+2) dx