Home
Class 12
MATHS
int (2x)/(x^2+3x+2) dx (ii) int x/((x+...

`int (2x)/(x^2+3x+2) dx`
(ii) `int x/((x+1)(x+2)) dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given integrals step by step. ### Part (i): \(\int \frac{2x}{x^2 + 3x + 2} \, dx\) 1. **Factor the Denominator**: The denominator \(x^2 + 3x + 2\) can be factored as: \[ x^2 + 3x + 2 = (x + 1)(x + 2) \] So we rewrite the integral: \[ \int \frac{2x}{(x + 1)(x + 2)} \, dx \] 2. **Rewrite the Numerator**: We can express \(2x\) as \(2(x + 1) - 2\): \[ \int \frac{2(x + 1) - 2}{(x + 1)(x + 2)} \, dx = \int \left( \frac{2}{x + 2} - \frac{2}{(x + 1)(x + 2)} \right) \, dx \] 3. **Split the Integral**: Now we can split the integral into two parts: \[ \int \frac{2}{x + 2} \, dx - 2 \int \frac{1}{(x + 1)(x + 2)} \, dx \] 4. **Integrate the First Part**: The first integral is straightforward: \[ \int \frac{2}{x + 2} \, dx = 2 \ln |x + 2| + C_1 \] 5. **Integrate the Second Part**: For the second integral, we can use partial fraction decomposition: \[ \frac{1}{(x + 1)(x + 2)} = \frac{A}{x + 1} + \frac{B}{x + 2} \] Solving for \(A\) and \(B\), we find \(A = 1\) and \(B = -1\): \[ \int \left( \frac{1}{x + 1} - \frac{1}{x + 2} \right) \, dx = \ln |x + 1| - \ln |x + 2| + C_2 \] 6. **Combine Results**: Putting it all together: \[ 2 \ln |x + 2| - 2 \left( \ln |x + 1| - \ln |x + 2| \right) = 2 \ln |x + 2| - 2 \ln |x + 1| + 2 \ln |x + 2| \] This simplifies to: \[ 4 \ln |x + 2| - 2 \ln |x + 1| + C \] ### Final Answer for Part (i): \[ \int \frac{2x}{x^2 + 3x + 2} \, dx = 4 \ln |x + 2| - 2 \ln |x + 1| + C \] --- ### Part (ii): \(\int \frac{x}{(x + 1)(x + 2)} \, dx\) 1. **Use Partial Fraction Decomposition**: We can express \(\frac{x}{(x + 1)(x + 2)}\) as: \[ \frac{x}{(x + 1)(x + 2)} = \frac{A}{x + 1} + \frac{B}{x + 2} \] Multiplying through by the denominator and solving gives \(A = 1\) and \(B = -1\): \[ \int \left( \frac{1}{x + 1} - \frac{1}{x + 2} \right) \, dx \] 2. **Integrate**: Now we can integrate: \[ \int \frac{1}{x + 1} \, dx - \int \frac{1}{x + 2} \, dx = \ln |x + 1| - \ln |x + 2| + C \] ### Final Answer for Part (ii): \[ \int \frac{x}{(x + 1)(x + 2)} \, dx = \ln |x + 1| - \ln |x + 2| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(i) LONG ANSWER QUESTION TYPE (II)|3 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(j) FAQ|7 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(i) SHORT ANSWER TYPE QUESTIONS|4 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int 2/((1-x)(1+x^2)) dx (ii) int x/((1-x)(1+x^2)) dx

1. int(x)/(x^(2)+3x+2)dx

Evaluate: (i) int(x^(2)+x+5)/(3x+2)dx (ii) int(2x+3)/((x-1)^(2))dx

int(5x-1)/(3x^2+x+2)dx=

int (x^2+3x+1/(x^2) )dx

(i) int 1/((x^2+1)(x^2+4)) dx (ii) int 1/((x^2+1)(x^2+2)) dx

int (dx)/((x+1)(2x+1)) (ii) int (x-1)/((x-2)(x-3)) dx .

(i) int_1^3 (3x)/(9x^2-1) dx (ii) int_2^3 x/(x^2+1) dx