Home
Class 12
MATHS
int x^4/(x^4-16) dx...

`int x^4/(x^4-16) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x^4}{x^4 - 16} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We can rewrite the integrand as follows: \[ \frac{x^4}{x^4 - 16} = 1 + \frac{16}{x^4 - 16} \] Thus, we can express the integral as: \[ \int \frac{x^4}{x^4 - 16} \, dx = \int 1 \, dx + \int \frac{16}{x^4 - 16} \, dx \] ### Step 2: Integrate the first part The first integral is straightforward: \[ \int 1 \, dx = x \] ### Step 3: Factor the denominator of the second integral Now, we need to factor \( x^4 - 16 \): \[ x^4 - 16 = (x^2 - 4)(x^2 + 4) = (x - 2)(x + 2)(x^2 + 4) \] So, we can rewrite the second integral as: \[ \int \frac{16}{(x - 2)(x + 2)(x^2 + 4)} \, dx \] ### Step 4: Use partial fraction decomposition We will express \( \frac{16}{(x - 2)(x + 2)(x^2 + 4)} \) in terms of partial fractions: \[ \frac{16}{(x - 2)(x + 2)(x^2 + 4)} = \frac{A}{x - 2} + \frac{B}{x + 2} + \frac{Cx + D}{x^2 + 4} \] Multiplying through by the denominator gives: \[ 16 = A(x + 2)(x^2 + 4) + B(x - 2)(x^2 + 4) + (Cx + D)(x - 2)(x + 2) \] ### Step 5: Solve for coefficients To find \( A, B, C, D \), we can substitute convenient values for \( x \) (like \( x = 2 \) and \( x = -2 \)) and also compare coefficients. 1. Let \( x = 2 \): \[ 16 = A(4)(8) \Rightarrow A = \frac{1}{8} \] 2. Let \( x = -2 \): \[ 16 = B(-4)(8) \Rightarrow B = -\frac{1}{8} \] 3. For \( C \) and \( D \), we can compare coefficients of \( x^3, x^2, x^1, x^0 \) from both sides. After solving, we find: \[ A = \frac{1}{8}, \quad B = -\frac{1}{8}, \quad C = 0, \quad D = 2 \] ### Step 6: Rewrite the integral Now we can rewrite the integral: \[ \int \frac{16}{(x - 2)(x + 2)(x^2 + 4)} \, dx = \int \left( \frac{1/8}{x - 2} - \frac{1/8}{x + 2} + \frac{2}{x^2 + 4} \right) \, dx \] ### Step 7: Integrate each term Now we integrate each term: 1. \( \int \frac{1/8}{x - 2} \, dx = \frac{1}{8} \ln |x - 2| \) 2. \( \int -\frac{1/8}{x + 2} \, dx = -\frac{1}{8} \ln |x + 2| \) 3. \( \int \frac{2}{x^2 + 4} \, dx = \frac{2}{2} \tan^{-1} \left( \frac{x}{2} \right) = \tan^{-1} \left( \frac{x}{2} \right) \) ### Step 8: Combine results Combining all parts, we have: \[ \int \frac{x^4}{x^4 - 16} \, dx = x + \frac{1}{8} \ln |x - 2| - \frac{1}{8} \ln |x + 2| + \tan^{-1} \left( \frac{x}{2} \right) + C \] ### Final Answer: \[ \int \frac{x^4}{x^4 - 16} \, dx = x + \frac{1}{8} \ln \left| \frac{x - 2}{x + 2} \right| + \tan^{-1} \left( \frac{x}{2} \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(i) LONG ANSWER QUESTION TYPE (II)|3 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(j) FAQ|7 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(i) SHORT ANSWER TYPE QUESTIONS|4 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int x^(4)dx

int (x+4)/(x-4) dx

int (x)/((x^(4)-16))dx=?

Show that int 1/(x^2-16)dx=1/8 log |(x-4)/(x+4)|+c

int 3x^4+x^4 dx

int ((x^2-4)/(x-2)) dx

int(x^(4))/(x+1)dx

int sqrt(x)-4/x^4 dx

Evaluate: int(x^(2)+4)/(x^(4)+16)dx

int(x^(2)-4)/(x^(4)+16)dx