Home
Class 12
MATHS
(i) int (e^x dx)/(e^x (e^x-1)) (ii) in...

(i) `int (e^x dx)/(e^x (e^x-1))`
(ii) `int e^x/((1+e^x)(2+e^x)) dx`
(iii) `int e^x/((e^x-1)^2(e^x+2)) dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the three integrals step by step. ### Part (i): Evaluate the integral: \[ \int \frac{e^x}{e^x(e^x - 1)} \, dx \] **Step 1: Substitution** Let \( t = e^x - 1 \). Then, \( e^x = t + 1 \) and \( dx = \frac{dt}{e^x} = \frac{dt}{t + 1} \). **Step 2: Rewrite the integral** Substituting into the integral, we have: \[ \int \frac{e^x}{e^x(e^x - 1)} \, dx = \int \frac{t + 1}{(t + 1)t} \cdot \frac{dt}{t + 1} = \int \frac{1}{t} - \frac{1}{t + 1} \, dt \] **Step 3: Integrate** Now, we can integrate: \[ \int \left( \frac{1}{t} - \frac{1}{t + 1} \right) dt = \ln |t| - \ln |t + 1| + C \] **Step 4: Substitute back** Substituting back \( t = e^x - 1 \): \[ \ln |e^x - 1| - \ln |e^x| + C = \ln \left( \frac{e^x - 1}{e^x} \right) + C = \ln \left( 1 - \frac{1}{e^x} \right) + C \] ### Final Answer for Part (i): \[ \int \frac{e^x}{e^x(e^x - 1)} \, dx = \ln \left( 1 - \frac{1}{e^x} \right) + C \] --- ### Part (ii): Evaluate the integral: \[ \int \frac{e^x}{(1 + e^x)(2 + e^x)} \, dx \] **Step 1: Substitution** Let \( t = e^x + 1 \). Then, \( e^x = t - 1 \) and \( dx = \frac{dt}{e^x} = \frac{dt}{t - 1} \). **Step 2: Rewrite the integral** Substituting into the integral, we have: \[ \int \frac{t - 1}{(t)(t + 1)} \cdot \frac{dt}{t - 1} = \int \frac{1}{t} - \frac{1}{t + 1} \, dt \] **Step 3: Integrate** Now, we can integrate: \[ \int \left( \frac{1}{t} - \frac{1}{t + 1} \right) dt = \ln |t| - \ln |t + 1| + C \] **Step 4: Substitute back** Substituting back \( t = e^x + 1 \): \[ \ln |e^x + 1| - \ln |e^x + 2| + C = \ln \left( \frac{e^x + 1}{e^x + 2} \right) + C \] ### Final Answer for Part (ii): \[ \int \frac{e^x}{(1 + e^x)(2 + e^x)} \, dx = \ln \left( \frac{e^x + 1}{e^x + 2} \right) + C \] --- ### Part (iii): Evaluate the integral: \[ \int \frac{e^x}{(e^x - 1)^2(e^x + 2)} \, dx \] **Step 1: Substitution** Let \( t = e^x - 1 \). Then, \( e^x = t + 1 \) and \( dx = \frac{dt}{t + 1} \). **Step 2: Rewrite the integral** Substituting into the integral, we have: \[ \int \frac{t + 1}{t^2(t + 3)} \cdot \frac{dt}{t + 1} = \int \frac{1}{t^2} - \frac{1}{t + 3} \, dt \] **Step 3: Integrate** Now, we can integrate: \[ \int \left( \frac{1}{t^2} - \frac{1}{t + 3} \right) dt = -\frac{1}{t} - \ln |t + 3| + C \] **Step 4: Substitute back** Substituting back \( t = e^x - 1 \): \[ -\frac{1}{e^x - 1} - \ln |e^x + 2| + C \] ### Final Answer for Part (iii): \[ \int \frac{e^x}{(e^x - 1)^2(e^x + 2)} \, dx = -\frac{1}{e^x - 1} - \ln |e^x + 2| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(i) LONG ANSWER QUESTION TYPE (II)|3 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(j) FAQ|7 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(i) SHORT ANSWER TYPE QUESTIONS|4 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

inte^x/((1+e^x)(e+e^x))dx

(i) int (dx)/(e^x+e^(-x)) (ii) int e^x/(e^(2x)+1) dx

int(e^x dx)/(1-e^(x))

int(e^(x)dx)/(e^(x)-1)

int(e^(x))/((e^(x)-1)(e^(x)+2))dx=

(i) int e^x sec^2 (e^x) dx (ii) int e^x cosec^2 (e^x) dx

(i) int(e^(x))/(1+e^(x))dx" "(ii) int (e^(x)) /((1+e^(x))^(4))dx

int(dx)/(e^(x)+e^(2x))

int e ^ (e ^ (x)) e ^ (x) dx

int e ^ (e ^ (x)) e ^ (x) dx