Home
Class 12
MATHS
(i) int (log x)/(x(1+log x)(2+log x)) dx...

(i) `int (log x)/(x(1+log x)(2+log x)) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\log x}{x(1+\log x)(2+\log x)} \, dx\), we can use substitution and integration techniques. Here’s a step-by-step solution: ### Step 1: Substitution Let \( u = \log x \). Then, the differential \( du = \frac{1}{x} \, dx \) implies that \( dx = x \, du = e^u \, du \). ### Step 2: Rewrite the Integral Substituting \( u \) into the integral, we have: \[ \int \frac{u}{e^u(1+u)(2+u)} e^u \, du = \int \frac{u}{(1+u)(2+u)} \, du \] ### Step 3: Partial Fraction Decomposition Next, we can perform partial fraction decomposition on \(\frac{u}{(1+u)(2+u)}\): \[ \frac{u}{(1+u)(2+u)} = \frac{A}{1+u} + \frac{B}{2+u} \] Multiplying through by the denominator \((1+u)(2+u)\) gives: \[ u = A(2+u) + B(1+u) \] Expanding this, we have: \[ u = 2A + Au + B + Bu \] Combining like terms: \[ u = (A + B)u + (2A + B) \] Setting coefficients equal gives us the system: 1. \( A + B = 1 \) 2. \( 2A + B = 0 \) ### Step 4: Solve for A and B From the first equation, \( B = 1 - A \). Substituting into the second equation: \[ 2A + (1 - A) = 0 \implies A + 1 = 0 \implies A = -1 \] Then substituting back to find \( B \): \[ B = 1 - (-1) = 2 \] ### Step 5: Rewrite the Integral Thus, we can rewrite the integral as: \[ \int \left( \frac{-1}{1+u} + \frac{2}{2+u} \right) \, du \] ### Step 6: Integrate Now we can integrate each term: \[ \int \frac{-1}{1+u} \, du + 2 \int \frac{1}{2+u} \, du = -\log|1+u| + 2\log|2+u| + C \] ### Step 7: Substitute Back Substituting back \( u = \log x \): \[ -\log|1+\log x| + 2\log|2+\log x| + C \] ### Final Answer Thus, the final answer is: \[ 2\log|2+\log x| - \log|1+\log x| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(i) LONG ANSWER QUESTION TYPE (II)|3 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(j) FAQ|7 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(i) SHORT ANSWER TYPE QUESTIONS|4 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int(log x-1)/((log x)^(2))dx

int((log x)/((1+log x)^(2)))dx

int (log x)/((log ex)^(2)) dx =….

int(dx)/(x(log x-1)(log x+1))

int(dx)/(x(log x-1)(log x+1))

int(dx)/(x(log x-1)(log x+1))

int(dx)/(x(log x-1)(log x+1))

int(dx)/(x(log x-1)(log x+1)

Evaluate: int(log x)/((1+log x)^(2))dx

" "int(log x)/((1+x)^(2))dx