Home
Class 12
MATHS
Evaluate: int (sec^2x)/sqrt(tan^2x+2tanx...

Evaluate: `int (sec^2x)/sqrt(tan^2x+2tanx+5) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{\sec^2 x}{\sqrt{\tan^2 x + 2\tan x + 5}} \, dx, \] we will follow these steps: ### Step 1: Substitution Let \( u = \tan x \). Then, we have: \[ du = \sec^2 x \, dx. \] This means that \( dx = \frac{du}{\sec^2 x} \). ### Step 2: Rewrite the Integral Substituting \( u \) into the integral, we get: \[ I = \int \frac{1}{\sqrt{u^2 + 2u + 5}} \, du. \] ### Step 3: Simplify the Expression Inside the Square Root We can simplify the expression under the square root: \[ u^2 + 2u + 5 = (u^2 + 2u + 1) + 4 = (u + 1)^2 + 4. \] ### Step 4: Substitute Back into the Integral Now, we rewrite the integral: \[ I = \int \frac{1}{\sqrt{(u + 1)^2 + 4}} \, du. \] ### Step 5: Use a Standard Integral Formula This integral can be solved using the standard integral formula: \[ \int \frac{1}{\sqrt{x^2 + a^2}} \, dx = \ln |x + \sqrt{x^2 + a^2}| + C. \] In our case, \( x = u + 1 \) and \( a = 2 \). Thus, we have: \[ I = \ln |(u + 1) + \sqrt{(u + 1)^2 + 4}| + C. \] ### Step 6: Substitute Back for \( u \) Now, substituting back \( u = \tan x \): \[ I = \ln |\tan x + 1 + \sqrt{(\tan x + 1)^2 + 4}| + C. \] ### Final Answer Thus, the final answer is: \[ I = \ln |\tan x + 1 + \sqrt{\tan^2 x + 2\tan x + 5}| + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(j) LONG ANSWER TYPE QUESTION (I)|5 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(k) LONG ANSWER TYPE QUESTION (I)|12 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(i) LONG ANSWER QUESTION TYPE (II)|3 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate int sec^2x/sqrt(tan^2x+9)dx

Evaluate int sec^2x/sqrt(tan^2x-4)dx

Evaluate: int(sec^2x)/(1-tan^2x)\ dx

int(sec^2x)/(sqrt(2tan^2x+3tanx+3))dx=

Evaluate: int(sec^(2)x)/(tan x+2)dx

Evaluate : int ( sec^2x ) / sqrt( tanx ) dx

Evaluate : int ( sec^2x ) / sqrt( tanx ) dx

Evaluate : int ( sec^2x ) / sqrt( tanx ) dx

int(sec^2x)/(2 tan^2x+7 tanx +13)dx=

Evaluate: int(sec^(2)x)/(sqrt(4+tan^(2)x))dx