Home
Class 12
MATHS
Evaluate: int0^2 (x^2+x+1)dx as the limi...

Evaluate: `int_0^2 (x^2+x+1)dx` as the limit of a sum.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \(\int_0^2 (x^2 + x + 1) \, dx\) as the limit of a sum, we can follow these steps: ### Step 1: Set up the integral as a limit of a sum We know that the definite integral can be expressed as a limit of a Riemann sum. The formula for the integral from \(a\) to \(b\) is given by: \[ \int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{i=0}^{n-1} f\left(a + i \cdot \frac{b-a}{n}\right) \cdot \frac{b-a}{n} \] In our case, \(a = 0\), \(b = 2\), and \(f(x) = x^2 + x + 1\). ### Step 2: Determine \(h\) and \(n\) Here, we have: \[ b - a = 2 - 0 = 2 \] Let \(h = \frac{b - a}{n} = \frac{2}{n}\). Thus, \(nh = 2\). ### Step 3: Write the Riemann sum The Riemann sum can be expressed as: \[ \int_0^2 (x^2 + x + 1) \, dx = \lim_{n \to \infty} \sum_{i=0}^{n-1} f\left(0 + i \cdot \frac{2}{n}\right) \cdot \frac{2}{n} \] Substituting \(f(x)\): \[ = \lim_{n \to \infty} \sum_{i=0}^{n-1} \left(\left(\frac{2i}{n}\right)^2 + \frac{2i}{n} + 1\right) \cdot \frac{2}{n} \] ### Step 4: Simplify the expression Now we simplify the expression inside the sum: \[ = \lim_{n \to \infty} \sum_{i=0}^{n-1} \left(\frac{4i^2}{n^2} + \frac{2i}{n} + 1\right) \cdot \frac{2}{n} \] Distributing \(\frac{2}{n}\): \[ = \lim_{n \to \infty} \sum_{i=0}^{n-1} \left(\frac{8i^2}{n^3} + \frac{4i}{n^2} + \frac{2}{n}\right) \] ### Step 5: Split the sum Now we can split the sum: \[ = \lim_{n \to \infty} \left(\frac{8}{n^3} \sum_{i=0}^{n-1} i^2 + \frac{4}{n^2} \sum_{i=0}^{n-1} i + \sum_{i=0}^{n-1} 2\right) \] ### Step 6: Use formulas for sums Using the formulas for the sums: 1. \(\sum_{i=0}^{n-1} i^2 = \frac{(n-1)n(2n-1)}{6}\) 2. \(\sum_{i=0}^{n-1} i = \frac{(n-1)n}{2}\) 3. \(\sum_{i=0}^{n-1} 1 = n\) Substituting these into the limit: \[ = \lim_{n \to \infty} \left(\frac{8}{n^3} \cdot \frac{(n-1)n(2n-1)}{6} + \frac{4}{n^2} \cdot \frac{(n-1)n}{2} + 2n\right) \] ### Step 7: Simplify each term 1. The first term: \[ \frac{8(n-1)n(2n-1)}{6n^3} \approx \frac{16}{3} \text{ as } n \to \infty \] 2. The second term: \[ \frac{4(n-1)n}{2n^2} \approx 2 \text{ as } n \to \infty \] 3. The third term: \[ 2n \text{ remains as } 2 \text{ as } n \to \infty \] ### Step 8: Combine the results Combining these results: \[ = \frac{16}{3} + 2 + 2 = \frac{16}{3} + \frac{6}{3} + \frac{6}{3} = \frac{28}{3} \] ### Final Result Thus, the value of the integral is: \[ \int_0^2 (x^2 + x + 1) \, dx = \frac{28}{3} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(m) LONG ANSWER TYPE QUESTION (I)|6 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) FAQ|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(k) LONG ANSWER TYPE QUESTION (I)|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(3)(x^(2)+4)dx as the limit of a sum

Evaluate int_(0)^(1)x^(2)dx as the limit of a sum.

Evaluate int_(0)^(2)(x^(2)+2x+1)dx as limit of a sum.

Evaluate: int_0^1log(x^2+x+1)dx

Find int_(0)^(2)(x^(2)+1)dx as the limit of a sum.

Evaluate int_0^2 |1-x| dx

Evaluate int_1^3 (2x+3)dx as the limit of a sum.

Evaluate int_(0)^(2)(2x^(2)+x+5)dx as limit of a sum.

Evaluate int_0^3 (x^2-2x+2)dx as limit of a sum.