Home
Class 12
MATHS
Evaluate: int1^3 (x^2+3x+e^x) dx...

Evaluate: `int_1^3 (x^2+3x+e^x) dx`

A

`(-e^2-1)`

B

`(e^2+1)`

C

`(e^2-1)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_1^3 (x^2 + 3x + e^x) \, dx \), we will break it down into manageable parts. ### Step 1: Break down the integral We can separate the integral into three parts: \[ \int_1^3 (x^2 + 3x + e^x) \, dx = \int_1^3 x^2 \, dx + \int_1^3 3x \, dx + \int_1^3 e^x \, dx \] ### Step 2: Evaluate each integral separately 1. **Evaluate \( \int_1^3 x^2 \, dx \)**: \[ \int x^2 \, dx = \frac{x^3}{3} \] Now, we apply the limits from 1 to 3: \[ \left[ \frac{x^3}{3} \right]_1^3 = \frac{3^3}{3} - \frac{1^3}{3} = \frac{27}{3} - \frac{1}{3} = \frac{26}{3} \] 2. **Evaluate \( \int_1^3 3x \, dx \)**: \[ \int 3x \, dx = \frac{3x^2}{2} \] Now, we apply the limits from 1 to 3: \[ \left[ \frac{3x^2}{2} \right]_1^3 = \frac{3(3^2)}{2} - \frac{3(1^2)}{2} = \frac{3 \cdot 9}{2} - \frac{3 \cdot 1}{2} = \frac{27}{2} - \frac{3}{2} = \frac{24}{2} = 12 \] 3. **Evaluate \( \int_1^3 e^x \, dx \)**: \[ \int e^x \, dx = e^x \] Now, we apply the limits from 1 to 3: \[ \left[ e^x \right]_1^3 = e^3 - e^1 = e^3 - e \] ### Step 3: Combine the results Now we combine all the results: \[ \int_1^3 (x^2 + 3x + e^x) \, dx = \frac{26}{3} + 12 + (e^3 - e) \] To combine \( 12 \) with \( \frac{26}{3} \), we convert \( 12 \) into a fraction: \[ 12 = \frac{36}{3} \] Thus, \[ \int_1^3 (x^2 + 3x + e^x) \, dx = \frac{26}{3} + \frac{36}{3} + (e^3 - e) = \frac{62}{3} + (e^3 - e) \] ### Final Answer \[ \int_1^3 (x^2 + 3x + e^x) \, dx = \frac{62}{3} + e^3 - e \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(m) LONG ANSWER TYPE QUESTION (I)|6 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) FAQ|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(k) LONG ANSWER TYPE QUESTION (I)|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_1^3 x^2 dx

Evaluate: int x^2 e^(3x) dx

Evaluate int_2^3 e^(-x) dx

Evaluate int_(-1)^(1)(x^2-3x+2)dx

Evaluate int x^2.e^(-3x)dx

Evaluate: int(3x^2+\ e^x\) dx

Evaluate: int x^(3)e^(x)dx

Evaluate: int1/(3+2x-x^2)\ dx

Evaluate: int(e^(3x))/(e^(3x)+1)dx

Evaluate: inte^x/(3-e^x)^2dx