Home
Class 12
MATHS
Evaluate: int-1^2 (e^(3x)+7x-5) dx as a ...

Evaluate: `int_-1^2 (e^(3x)+7x-5) dx` as a limit of sums.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \(\int_{-1}^{2} (e^{3x} + 7x - 5) \, dx\) as a limit of sums, we will follow the steps outlined below: ### Step 1: Define the function and interval Let \( f(x) = e^{3x} + 7x - 5 \). We are integrating this function over the interval \([-1, 2]\). ### Step 2: Determine the width of subintervals The width of each subinterval, denoted as \( h \), can be calculated as: \[ h = \frac{b - a}{n} = \frac{2 - (-1)}{n} = \frac{3}{n} \] ### Step 3: Set up the limit of sums The Riemann sum for the integral can be expressed as: \[ \int_{-1}^{2} f(x) \, dx = \lim_{n \to \infty} \sum_{i=0}^{n-1} f(a + ih) \cdot h \] Substituting \( a = -1 \) and \( h = \frac{3}{n} \): \[ \int_{-1}^{2} f(x) \, dx = \lim_{n \to \infty} \sum_{i=0}^{n-1} f\left(-1 + i \cdot \frac{3}{n}\right) \cdot \frac{3}{n} \] ### Step 4: Substitute \( f(x) \) into the sum Now we need to evaluate \( f\left(-1 + i \cdot \frac{3}{n}\right) \): \[ f\left(-1 + i \cdot \frac{3}{n}\right) = e^{3\left(-1 + i \cdot \frac{3}{n}\right)} + 7\left(-1 + i \cdot \frac{3}{n}\right) - 5 \] This simplifies to: \[ = e^{-3} \cdot e^{\frac{9i}{n}} + 7\left(-1 + \frac{3i}{n}\right) - 5 \] \[ = e^{-3} \cdot e^{\frac{9i}{n}} - 7 + \frac{21i}{n} - 5 \] \[ = e^{-3} \cdot e^{\frac{9i}{n}} - 12 + \frac{21i}{n} \] ### Step 5: Substitute back into the Riemann sum Now, substituting this back into the sum: \[ \int_{-1}^{2} f(x) \, dx = \lim_{n \to \infty} \sum_{i=0}^{n-1} \left(e^{-3} \cdot e^{\frac{9i}{n}} - 12 + \frac{21i}{n}\right) \cdot \frac{3}{n} \] Distributing \( \frac{3}{n} \): \[ = \lim_{n \to \infty} \left( \sum_{i=0}^{n-1} \left(e^{-3} \cdot e^{\frac{9i}{n}} \cdot \frac{3}{n}\right) - 12 \cdot \frac{3}{n} \sum_{i=0}^{n-1} 1 + \frac{21}{n} \sum_{i=0}^{n-1} i \right) \] ### Step 6: Evaluate the sums 1. The first sum: \[ \sum_{i=0}^{n-1} e^{-3} \cdot e^{\frac{9i}{n}} \cdot \frac{3}{n} \to 3 e^{-3} \int_{0}^{1} e^{9x} \, dx = 3 e^{-3} \cdot \left[\frac{1}{9} e^{9x}\right]_{0}^{1} = \frac{3 e^{-3}}{9} (e^9 - 1) \] 2. The second sum: \[ -12 \cdot \frac{3}{n} \cdot n = -36 \] 3. The third sum: \[ \frac{21}{n} \cdot \frac{(n-1)n}{2} \to \frac{21}{2} \cdot n \to \frac{21}{2} \] ### Step 7: Combine the results Putting it all together: \[ \int_{-1}^{2} f(x) \, dx = \frac{3 e^{-3}}{9} (e^9 - 1) - 36 + \frac{21}{2} \] ### Step 8: Final simplification Combine the constants and simplify: \[ = \frac{e^{-3}}{3} (e^9 - 1) - 36 + 10.5 \] \[ = \frac{e^{-3}}{3} (e^9 - 1) - 25.5 \] ### Conclusion Thus, the evaluation of the integral \(\int_{-1}^{2} (e^{3x} + 7x - 5) \, dx\) as a limit of sums leads to the final expression. ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(m) LONG ANSWER TYPE QUESTION (I)|6 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) FAQ|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(k) LONG ANSWER TYPE QUESTION (I)|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_(-1)^(2)e^(x) dx as a limit of sum.

Evaluate int_(0)^(1)e^(2-3x)dx as a limit of a sum.

Evaluate int_(0)^(1)e^(2-3x)dx

Evaluate int_(0)^(1)e^(2-3x)dx

Evaluate int_(1)^(4)(x^(2)-x)dx as a limit of sums

Evaluate int_(0)^(2)(2x^(2)+x+5)dx as limit of a sum.

Evaluate: int_(1)^(3)(2x^(2)+5x)dx as limit of a sum

Evaluate int_(0)^(4)(2x^(2)+5x)dx as a limit of sum

Evaluate: int_0^2 (x^2+x+1)dx as the limit of a sum.

Evaluate int_(0)^(1)(3x^(2)+2x+1)dx as limit of the sum.