Home
Class 12
MATHS
Prove that int0^(pi//2) sin 2x log tanx ...

Prove that `int_0^(pi//2) sin 2x log tanx dx=0`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \int_0^{\frac{\pi}{2}} \sin 2x \log \tan x \, dx = 0, \] we will use the property of integrals that states: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx. \] ### Step 1: Define the Integral Let \[ I = \int_0^{\frac{\pi}{2}} \sin 2x \log \tan x \, dx. \] ### Step 2: Apply the Integral Property Using the property of integrals, we can rewrite the integral as follows: \[ I = \int_0^{\frac{\pi}{2}} \sin 2\left(\frac{\pi}{2} - x\right) \log \tan\left(\frac{\pi}{2} - x\right) \, dx. \] ### Step 3: Simplify the Integral Now, we simplify the terms inside the integral: - \(\sin 2\left(\frac{\pi}{2} - x\right) = \sin(\pi - 2x) = \sin 2x\) (since \(\sin\) is positive in the second quadrant). - \(\tan\left(\frac{\pi}{2} - x\right) = \cot x\). Thus, we can rewrite the integral: \[ I = \int_0^{\frac{\pi}{2}} \sin 2x \log \cot x \, dx. \] ### Step 4: Rewrite \(\log \cot x\) We know that: \[ \log \cot x = \log \left(\frac{1}{\tan x}\right) = -\log \tan x. \] ### Step 5: Substitute Back into the Integral Substituting this back, we have: \[ I = \int_0^{\frac{\pi}{2}} \sin 2x (-\log \tan x) \, dx = -\int_0^{\frac{\pi}{2}} \sin 2x \log \tan x \, dx = -I. \] ### Step 6: Add the Two Expressions for \(I\) Now, we add the two expressions for \(I\): \[ I + I = 0 \implies 2I = 0 \implies I = 0. \] ### Conclusion Thus, we have proved that: \[ \int_0^{\frac{\pi}{2}} \sin 2x \log \tan x \, dx = 0. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) SHORT ANSWER QUESTION TYPE|11 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) LONG ANSWER TYPE QUESTIONS (I)|12 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) SHORT ANSWER TYPE QUESTIONS|43 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi/2) sin x dx

Prove that int_(0)^((pi)/(2))sin2x log tan xdx=0

Prove that (a) int_(0)^(pi//2)sin2xlog(tanx)dx=0 (b)int_(0)^(1)log((1)/(x)-1)dx=0

Prove that : int_(0)^(pi//2) (sin x-cos x)/(1+sin x cos x)dx=0 " (ii) Prove that " : int_(0)^(pi//2) sin 2x. log (tan-x) dx=0

int_(0)^(pi//2) (2logsin x - log sin 2x) dx=

int_(0)^((pi)/(2))sin2x*log(tan x)dx=

Prove that: int_(0)^(pi//2) log (sin x) dx =int_(0)^(pi//2) log (cos x) dx =(-pi)/(2) log 2

Prove that : int_(0)^(pi//2) (sin x -cos x) log (sin^(3) x + cos^(3)x) dx=0

Prove that int_(0)^(pi//2)(2logsinx-logsin2x)dx=(pi)/(2)(log2) .