Home
Class 12
MATHS
Evaluate: int0^pi cos 2x log sin x dx...

Evaluate: `int_0^pi cos 2x log sin x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_0^\pi \cos(2x) \log(\sin x) \, dx \), we will use integration by parts. ### Step 1: Set up integration by parts Let: - \( u = \log(\sin x) \) (which we will differentiate) - \( dv = \cos(2x) \, dx \) (which we will integrate) Then, we need to find \( du \) and \( v \): - Differentiate \( u \): \[ du = \frac{1}{\sin x} \cos x \, dx = \cot x \, dx \] - Integrate \( dv \): \[ v = \int \cos(2x) \, dx = \frac{1}{2} \sin(2x) \] ### Step 2: Apply integration by parts formula The integration by parts formula is: \[ \int u \, dv = uv - \int v \, du \] Substituting our values: \[ I = \left[ \log(\sin x) \cdot \frac{1}{2} \sin(2x) \right]_0^\pi - \int_0^\pi \frac{1}{2} \sin(2x) \cot x \, dx \] ### Step 3: Evaluate the boundary term Evaluate \( \left[ \log(\sin x) \cdot \frac{1}{2} \sin(2x) \right]_0^\pi \): - At \( x = 0 \): \[ \sin(2 \cdot 0) = 0 \quad \text{and} \quad \log(\sin(0)) \text{ is undefined, but approaches } -\infty \] - At \( x = \pi \): \[ \sin(2 \cdot \pi) = 0 \quad \text{and} \quad \log(\sin(\pi)) \text{ is also undefined, but approaches } -\infty \] Thus, both terms vanish, leading to: \[ \left[ \log(\sin x) \cdot \frac{1}{2} \sin(2x) \right]_0^\pi = 0 \] ### Step 4: Simplify the integral Now we have: \[ I = 0 - \frac{1}{2} \int_0^\pi \sin(2x) \cot x \, dx \] This can be rewritten as: \[ I = -\frac{1}{2} \int_0^\pi \frac{\sin(2x)}{\sin x} \cos x \, dx \] ### Step 5: Evaluate the integral Using the identity \( \sin(2x) = 2 \sin x \cos x \): \[ \int_0^\pi \frac{\sin(2x)}{\sin x} \cos x \, dx = \int_0^\pi 2 \cos^2 x \, dx \] Now, we can evaluate: \[ \int_0^\pi \cos^2 x \, dx = \frac{1}{2} \int_0^\pi (1 + \cos(2x)) \, dx = \frac{1}{2} \left[ x + \frac{1}{2} \sin(2x) \right]_0^\pi = \frac{1}{2} \left[ \pi + 0 \right] = \frac{\pi}{2} \] ### Step 6: Substitute back Thus, we have: \[ I = -\frac{1}{2} \cdot 2 \cdot \frac{\pi}{2} = -\frac{\pi}{2} \] ### Conclusion The final result is: \[ \int_0^\pi \cos(2x) \log(\sin x) \, dx = -\frac{\pi}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) SHORT ANSWER QUESTION TYPE|11 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) LONG ANSWER TYPE QUESTIONS (I)|12 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) SHORT ANSWER TYPE QUESTIONS|43 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi) cos 2x . Log (sinx) dx

int_(0)^( pi)cos2x*log(sin x)dx

Evaluate: int_0^pi x/(1+cos^2x)dx

int_(0)^((pi)/(2))cos2x log sin xdx

Evaluate : int_0^(pi/4) ( cos 2 x)/( cos 2x + sin 2x) dx

The value of the integral int_(0) ^(pi) cos 2 x log _(e) sin x dx is

Evaluate int_0^(pi/4) dx/(cos^2x + 4sin^2x)

Evaluate: int_0^pi x/(a^2-cos^2x)dx

Evaluate: int sin x log(cos x)dx