Home
Class 12
MATHS
Evaluate: int0^2 |x^2+2x-3| dx...

Evaluate: `int_0^2 |x^2+2x-3| dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_0^2 |x^2 + 2x - 3| \, dx \), we first need to determine where the expression inside the absolute value is positive or negative. ### Step 1: Factor the quadratic expression The expression \( x^2 + 2x - 3 \) can be factored. We look for two numbers that multiply to \(-3\) (the constant term) and add to \(2\) (the coefficient of \(x\)). The factors are \(3\) and \(-1\). Thus, we can write: \[ x^2 + 2x - 3 = (x - 1)(x + 3) \] ### Step 2: Find the roots Setting the expression equal to zero gives us the roots: \[ x - 1 = 0 \quad \Rightarrow \quad x = 1 \] \[ x + 3 = 0 \quad \Rightarrow \quad x = -3 \] ### Step 3: Determine the sign of the expression in the interval [0, 2] We need to evaluate the sign of \( |x^2 + 2x - 3| \) in the interval from \(0\) to \(2\). - For \(x < -3\), the expression is positive. - For \(-3 < x < 1\), the expression is negative. - For \(x > 1\), the expression is positive. In the interval \([0, 2]\): - At \(x = 0\): \(0^2 + 2(0) - 3 = -3\) (negative) - At \(x = 1\): \(1^2 + 2(1) - 3 = 0\) (zero) - At \(x = 2\): \(2^2 + 2(2) - 3 = 5\) (positive) Thus, we have: - From \(0\) to \(1\), \(x^2 + 2x - 3 < 0\) - From \(1\) to \(2\), \(x^2 + 2x - 3 > 0\) ### Step 4: Rewrite the integral We can split the integral at the point where the expression changes sign: \[ \int_0^2 |x^2 + 2x - 3| \, dx = \int_0^1 -(x^2 + 2x - 3) \, dx + \int_1^2 (x^2 + 2x - 3) \, dx \] ### Step 5: Evaluate the integrals 1. **First Integral**: \[ \int_0^1 -(x^2 + 2x - 3) \, dx = \int_0^1 (-x^2 - 2x + 3) \, dx \] Calculating this: \[ = \left[-\frac{x^3}{3} - x^2 + 3x\right]_0^1 = \left[-\frac{1}{3} - 1 + 3\right] - [0] = -\frac{1}{3} - 1 + 3 = -\frac{1}{3} + 2 = \frac{5}{3} \] 2. **Second Integral**: \[ \int_1^2 (x^2 + 2x - 3) \, dx \] Calculating this: \[ = \left[\frac{x^3}{3} + x^2 - 3x\right]_1^2 \] Calculating at the limits: \[ = \left[\frac{2^3}{3} + 2^2 - 3(2)\right] - \left[\frac{1^3}{3} + 1^2 - 3(1)\right] \] \[ = \left[\frac{8}{3} + 4 - 6\right] - \left[\frac{1}{3} + 1 - 3\right] \] \[ = \left[\frac{8}{3} - 2\right] - \left[\frac{1}{3} - 2\right] \] \[ = \left[\frac{8}{3} - \frac{6}{3}\right] - \left[\frac{1}{3} - \frac{6}{3}\right] \] \[ = \left[\frac{2}{3}\right] - \left[-\frac{5}{3}\right] = \frac{2}{3} + \frac{5}{3} = \frac{7}{3} \] ### Step 6: Combine the results Now, we combine the results of the two integrals: \[ \int_0^2 |x^2 + 2x - 3| \, dx = \frac{5}{3} + \frac{7}{3} = \frac{12}{3} = 4 \] ### Final Answer Thus, the value of the integral is: \[ \int_0^2 |x^2 + 2x - 3| \, dx = 4 \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) SHORT ANSWER QUESTION TYPE|11 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) LONG ANSWER TYPE QUESTIONS (I)|12 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) SHORT ANSWER TYPE QUESTIONS|43 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_0^2 |1-x| dx

Evaluate int_(0)^(2) |x^2-3x+2|dx

Evaluate int_(0)^(2)3x^2dx

Evaluate: int_0^2 sqrt(4-x^2) dx

Evaluate : int_0^2 (2x^2+3x+1)dx by second Fundamental Theorem.

Evaluate: int_(0)^(3) x^(2) dx

Evaluate int_0^1 x/(1+x^2) dx

Evaluate int_0^(pi/2) cos^2x dx

Evaluate int_0^3 (x^2-2x+2)dx as limit of a sum.

Evaluate: int_(0)^(1)|5x-3|dx( ii) int_(0)^( pi)|cos x|dx( iii) int_(-5)^(5)|x-2|dx( iv )int_(-1)^(1)e^(|x|)dx(v)int_(0)^(2)|x^(2)+2x-3|dx(v)int_(1)^(4)(|x-1|+|x-2|+|x-3|)dx( vi) int_(1)^(2)|x^(3)-x|dx