Home
Class 12
MATHS
Evaluate: int0^(3//2) |x sin pi x| dx....

Evaluate: `int_0^(3//2) |x sin pi x| dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_0^{\frac{3}{2}} |x \sin(\pi x)| \, dx \), we need to analyze the expression inside the absolute value to determine where it is positive and where it is negative. ### Step 1: Determine the intervals of positivity and negativity 1. The function \( x \) is positive for \( x \in [0, \frac{3}{2}] \). 2. The function \( \sin(\pi x) \) oscillates between -1 and 1. We need to find where \( \sin(\pi x) = 0 \) within the interval \( [0, \frac{3}{2}] \): - \( \sin(\pi x) = 0 \) at \( x = 0, 1, 2 \). - In the interval \( [0, \frac{3}{2}] \), \( \sin(\pi x) \) is positive for \( x \in [0, 1] \) and negative for \( x \in (1, \frac{3}{2}] \). ### Step 2: Split the integral Given the analysis, we can split the integral at \( x = 1 \): \[ I = \int_0^1 x \sin(\pi x) \, dx - \int_1^{\frac{3}{2}} x \sin(\pi x) \, dx \] ### Step 3: Evaluate the first integral \( \int_0^1 x \sin(\pi x) \, dx \) We will use integration by parts: Let \( u = x \) and \( dv = \sin(\pi x) \, dx \). Then, \( du = dx \) and \( v = -\frac{1}{\pi} \cos(\pi x) \). Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] \[ \int_0^1 x \sin(\pi x) \, dx = \left[ -\frac{x}{\pi} \cos(\pi x) \right]_0^1 + \frac{1}{\pi} \int_0^1 \cos(\pi x) \, dx \] Calculating the boundary term: \[ \left[ -\frac{x}{\pi} \cos(\pi x) \right]_0^1 = -\frac{1}{\pi} \cos(\pi) - 0 = \frac{1}{\pi} \] Now, we compute the remaining integral: \[ \int_0^1 \cos(\pi x) \, dx = \left[ \frac{1}{\pi} \sin(\pi x) \right]_0^1 = \frac{1}{\pi}(\sin(\pi) - \sin(0)) = 0 \] Thus, \[ \int_0^1 x \sin(\pi x) \, dx = \frac{1}{\pi} + 0 = \frac{1}{\pi} \] ### Step 4: Evaluate the second integral \( \int_1^{\frac{3}{2}} x \sin(\pi x) \, dx \) Again using integration by parts: Let \( u = x \) and \( dv = \sin(\pi x) \, dx \). Then, \( du = dx \) and \( v = -\frac{1}{\pi} \cos(\pi x) \). Using integration by parts: \[ \int_1^{\frac{3}{2}} x \sin(\pi x) \, dx = \left[ -\frac{x}{\pi} \cos(\pi x) \right]_1^{\frac{3}{2}} + \frac{1}{\pi} \int_1^{\frac{3}{2}} \cos(\pi x) \, dx \] Calculating the boundary term: \[ \left[ -\frac{x}{\pi} \cos(\pi x) \right]_1^{\frac{3}{2}} = -\frac{\frac{3}{2}}{\pi} \cos\left(\frac{3\pi}{2}\right) + \frac{1}{\pi} \cos(\pi) = -\frac{\frac{3}{2}}{\pi}(0) + \frac{1}{\pi}(-1) = -\frac{1}{\pi} \] Now, we compute the remaining integral: \[ \int_1^{\frac{3}{2}} \cos(\pi x) \, dx = \left[ \frac{1}{\pi} \sin(\pi x) \right]_1^{\frac{3}{2}} = \frac{1}{\pi}(\sin(\frac{3\pi}{2}) - \sin(\pi)) = \frac{1}{\pi}(-1 - 0) = -\frac{1}{\pi} \] Thus, \[ \int_1^{\frac{3}{2}} x \sin(\pi x) \, dx = -\frac{1}{\pi} - \frac{1}{\pi} = -\frac{2}{\pi} \] ### Step 5: Combine the results Now we can combine our results: \[ I = \frac{1}{\pi} - \left(-\frac{2}{\pi}\right) = \frac{1}{\pi} + \frac{2}{\pi} = \frac{3}{\pi} \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\frac{3}{\pi}} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) SHORT ANSWER QUESTION TYPE|11 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) LONG ANSWER TYPE QUESTIONS (I)|12 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) SHORT ANSWER TYPE QUESTIONS|43 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^((3)/(2))|x sin pi x|dx

Evaluate :int_(0)^((3)/(2))|x sin pi x|dx

Evaluate : int_(0)^(pi//2) sin x dx

(i) Show that int_(0)^(pi)xf(sinx)dx =(pi)/(2)int_(0)^(pi)f (sin x)dx. (ii) Find the value of int_(-1)^(3//2)|x sin pix|dx .

Evaluate int_0^(pi/2) sin^7x dx

Evaluate int_(-1)^((3)/(2))|x sin(pi x)|dx

int_0^(pi/2) sin x sin 2x dx

int_0^(pi//2) sin^3 x dx

int_0^(pi/2) sin x dx

Prove that : int_(0)^(a) f(x) dx = int_(0)^(a) f(a-x)dx hence evaluate : int_(0)^(pi//2) (sin x)/(sin x + cos x) dx