Home
Class 12
MATHS
Evaluate: int-2^2 f(x) dx where f(x)={...

Evaluate: `int_-2^2 f(x) dx` where
`f(x)={:{(2x-1,-2 le x le1),(3x-2,1lex le2):}`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{-2}^{2} f(x) \, dx \) where \[ f(x) = \begin{cases} 2x - 1 & \text{for } -2 \leq x \leq 1 \\ 3x - 2 & \text{for } 1 < x \leq 2 \end{cases} \] we will split the integral into two parts based on the definition of \( f(x) \). ### Step 1: Split the Integral We can break the integral into two parts: \[ \int_{-2}^{2} f(x) \, dx = \int_{-2}^{1} f(x) \, dx + \int_{1}^{2} f(x) \, dx \] ### Step 2: Evaluate the First Integral For the first integral, where \( f(x) = 2x - 1 \): \[ \int_{-2}^{1} (2x - 1) \, dx \] Calculating this integral: \[ = \left[ x^2 - x \right]_{-2}^{1} \] Now, we evaluate the limits: \[ = \left(1^2 - 1\right) - \left((-2)^2 - (-2)\right) \] \[ = (1 - 1) - (4 + 2) = 0 - 6 = -6 \] ### Step 3: Evaluate the Second Integral For the second integral, where \( f(x) = 3x - 2 \): \[ \int_{1}^{2} (3x - 2) \, dx \] Calculating this integral: \[ = \left[ \frac{3}{2}x^2 - 2x \right]_{1}^{2} \] Now, we evaluate the limits: \[ = \left( \frac{3}{2}(2^2) - 2(2) \right) - \left( \frac{3}{2}(1^2) - 2(1) \right) \] \[ = \left( \frac{3}{2}(4) - 4 \right) - \left( \frac{3}{2}(1) - 2 \right) \] \[ = \left( 6 - 4 \right) - \left( \frac{3}{2} - 2 \right) \] \[ = 2 - \left( \frac{3}{2} - \frac{4}{2} \right) = 2 - \left( -\frac{1}{2} \right) = 2 + \frac{1}{2} = \frac{5}{2} \] ### Step 4: Combine the Results Now, we combine the results of both integrals: \[ \int_{-2}^{2} f(x) \, dx = -6 + \frac{5}{2} \] To combine these, we convert -6 into a fraction: \[ -6 = -\frac{12}{2} \] Thus, \[ \int_{-2}^{2} f(x) \, dx = -\frac{12}{2} + \frac{5}{2} = -\frac{7}{2} \] ### Final Answer The value of the integral is: \[ \int_{-2}^{2} f(x) \, dx = -\frac{7}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) SHORT ANSWER QUESTION TYPE|11 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) LONG ANSWER TYPE QUESTIONS (I)|12 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) SHORT ANSWER TYPE QUESTIONS|43 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_1^4 f(x)dx , where f(x)={(2x+8,1lex,le,2),(6x,2lex,le,4):}

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

Evaluate int_(1)^(4)f(x)dx , where f(x)={{:(4x+3,"if" 1 le x le 2),(3x+5,"if" 2 le x le 4.):}

Let f(x) be defined on [-2,2] and is given by f(x) = {{:(x+1, - 2le x le 0 ),(x - 1, 0 le x le 2):} , then f (|x|) is defined as

Let f(x) be defined on [-2,2[ such that f(x)={{:(,-1,-2 le x le 0),(,x-1,0 le x le 2):} and g(x)= f(|x|)+|f(x)| . Then g(x) is differentiable in the interval.

Let f(x) be defined on [-2,2] and be given by f(x)={(-1",",-2 le x le 0),(x-1",",0 lt x le 2):} and g(x)=f(|x|) +|f(x)| . Then find g(x) .

Evaluate int_-1^1 f(x)dx , {(1,-,2x,x,le,0),(1,+,2x,x,ge,0):}