Home
Class 12
MATHS
Prove that int-a^a f(x) dx=0, where 'f' ...

Prove that `int_-a^a f(x) dx=0`, where 'f' is an odd function. And, evaluate, `int_-1^1 log[(2-x)/(2+x)] dx`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) LONG ANSWER TYPE QUESTIONS (I)|12 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|50 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) FAQ|23 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(1/2)x log(1-x)dx

Evaluate :int_(0)^(1)x log(1+2x)dx

Evaluate int_(0)^(1)(ln(1+x))/(1+x)dx

Prove that int_-2^2 f(x^4)dx=2int_0^2 f(x^4)dx

If f is an odd function,then evaluate I=int_(-a)^(a)(f(sin x))/(f(cos x)+f(sin^(2)x))dx

If f is an odd function, show that: int_-a^a f(sinx)/(f(cosx)+f(sin^2x))dx=0

Let f be an odd function then int_(-1)^(1) (|x| +f(x) cos x) dx is equal to

Evaluate int_(0)^(a)((log(1+ax))/(1+x^(2))dx)

int_(0)^(1)(log(1+x))/(1+x^(2))dx