Home
Class 12
MATHS
int (sin^2x-cos^2x)/(sin^2x cos^2 x) dx ...

`int (sin^2x-cos^2x)/(sin^2x cos^2 x) dx` is equal to:

A

tanx+cotx+c

B

tanx+cosecx+c

C

`-tanx+cotx+c`

D

`tanx+secx+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\sin^2 x - \cos^2 x}{\sin^2 x \cos^2 x} \, dx, \] we can start by rewriting the integrand. ### Step 1: Rewrite the integrand We can separate the integral into two parts: \[ I = \int \left( \frac{\sin^2 x}{\sin^2 x \cos^2 x} - \frac{\cos^2 x}{\sin^2 x \cos^2 x} \right) \, dx. \] This simplifies to: \[ I = \int \left( \frac{1}{\cos^2 x} - \frac{1}{\sin^2 x} \right) \, dx. \] ### Step 2: Use trigonometric identities Recall that: \[ \frac{1}{\cos^2 x} = \sec^2 x \quad \text{and} \quad \frac{1}{\sin^2 x} = \csc^2 x. \] Thus, we can rewrite the integral as: \[ I = \int \sec^2 x \, dx - \int \csc^2 x \, dx. \] ### Step 3: Integrate each term Now we can integrate each term separately: 1. The integral of \(\sec^2 x\) is \(\tan x\). 2. The integral of \(\csc^2 x\) is \(-\cot x\). So we have: \[ I = \tan x - (-\cot x) + C, \] which simplifies to: \[ I = \tan x + \cot x + C. \] ### Final Result Thus, the integral \[ \int \frac{\sin^2 x - \cos^2 x}{\sin^2 x \cos^2 x} \, dx = \tan x + \cot x + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise FILL IN THE BLANKS|15 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise TRUE/FALSE QUESTIONS|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) LONG ANSWER TYPE QUESTIONS (I)|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int 1/(sin^2x cos^2x )dx is equal to:

int (sin^2x-cos^2x)/(sin x cos x) dx= _____

int(sin^(2)x - cos^(2)x)/(sin^(2)x cos^(2)x) dx is equal to

int(sin2x-cos2x)/(sin2x*cos2x)dx=?

int(sin^(6)x+cos^(6)x+3sin^(2)x cos^(2)x)dx is equal to

MODERN PUBLICATION-INTEGRALS-MULTIPLE CHOICE QUESTION
  1. int(10 x^9+10 x^x(log)(e^(10))dx)/(x^(10)+10^x)equals(A) 10^x-x^(10)+C...

    Text Solution

    |

  2. int dx/(sin^2 x cos^2 x) equals

    Text Solution

    |

  3. int (sin^2x-cos^2x)/(sin^2x cos^2 x) dx is equal to:

    Text Solution

    |

  4. int(e^(x)(1+x))/(cos^(2)(e^(x)x))dx equal to

    Text Solution

    |

  5. int(dx)/(x^2+2x+2)equals(A) xtan^(-1)(x+1)+C (B) tan^(-1)(x+1)+C(C) (...

    Text Solution

    |

  6. int(dx)/(sqrt(9x-4x^2))equals(A) 1/9sin^(-1)((9x-8)/8)+C (B) 1/2sin^(...

    Text Solution

    |

  7. int(x dx)/((x-1)(x-2)equal(A) log|((x-1)^2)/(x-2)|+C (B) log|((x-2)^2...

    Text Solution

    |

  8. int(dx)/(x(x^2+1)equal(A) log|x|-1/2log(x^2+1)+C (B) log|x|+1/2log(x^...

    Text Solution

    |

  9. Choose the correct answer intx^2e^x^3dx equals (A) 1/3e^x^3+C (B) ...

    Text Solution

    |

  10. inte^(x)secx(1+tanx)dx=?

    Text Solution

    |

  11. Choose the correct answer intsqrt(a+x^2)dx is equal to (A) x/2sqrt(...

    Text Solution

    |

  12. int sqrt(x^2-8x+7) is equal to

    Text Solution

    |

  13. int1^(sqrt(3))1/(1+x^2)dx is equal to pi/(12) b. pi/4 c. pi/6 d. pi/3

    Text Solution

    |

  14. int0^(2//3) (dx)/(4x+9x^2) equals:

    Text Solution

    |

  15. The value of the integral overset(1)underset(1//3)int((x-x^(3))^(1//...

    Text Solution

    |

  16. If f(x) = int (0)^(x) t sin t d t, then f'(x) is

    Text Solution

    |

  17. The value of int(-pi//2)^(pi//2) \ (x^3 + x cos x + tan^5 x + 1)dx is ...

    Text Solution

    |

  18. The value of int0^(pi//2) log ((4+3 sin x)/(4+3 cos x)) dx is:

    Text Solution

    |

  19. Choose the correct answersint(dx)/(e^x+e^(-x))is equal to(A) tan^(-1)(...

    Text Solution

    |

  20. The value of int(cos2x)/(sinx+cosx)^(2) dx is equal to

    Text Solution

    |