Home
Class 12
MATHS
int sqrt(x^2-8x+7) is equal to...

`int sqrt(x^2-8x+7)` is equal to

A

`1/2(x-4)sqrt(x^2-8x+7)+9log |(x-4)+sqrt(x^2-8x+7)|+c`

B

`1/2(x-4)sqrt(x^2-8x+7)+9log |(x+4)+sqrt(x^2-8x+7)|+c`

C

`1/2(x-4)sqrt(x^2-8x+7)-3sqrt2log |(x-4)+sqrt(x^2-8x+7)|+c`

D

`1/2(x-4)sqrt(x^2-8x+7)-9/2log |(x-4)+sqrt(x^2-8x+7)|+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \sqrt{x^2 - 8x + 7} \, dx \), we will follow these steps: ### Step 1: Simplify the expression under the square root First, we need to simplify the expression inside the square root: \[ x^2 - 8x + 7 = (x^2 - 8x + 16) - 9 = (x - 4)^2 - 3^2 \] Thus, we can rewrite the integral as: \[ I = \int \sqrt{(x - 4)^2 - 3^2} \, dx \] ### Step 2: Use the integral formula We can use the formula for the integral of the form \( \int \sqrt{x^2 - a^2} \, dx \): \[ \int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + C \] In our case, \( a = 3 \) and \( x \) is replaced by \( x - 4 \). Therefore, we can apply the formula: \[ I = \frac{x - 4}{2} \sqrt{(x - 4)^2 - 3^2} - \frac{3^2}{2} \log \left| (x - 4) + \sqrt{(x - 4)^2 - 3^2} \right| + C \] ### Step 3: Simplify the expression Now, we simplify the expression: \[ I = \frac{x - 4}{2} \sqrt{(x - 4)^2 - 9} - \frac{9}{2} \log \left| (x - 4) + \sqrt{(x - 4)^2 - 9} \right| + C \] ### Final Answer Thus, the final result of the integral is: \[ I = \frac{x - 4}{2} \sqrt{(x - 4)^2 - 9} - \frac{9}{2} \log \left| (x - 4) + \sqrt{(x - 4)^2 - 9} \right| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise FILL IN THE BLANKS|15 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise TRUE/FALSE QUESTIONS|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) LONG ANSWER TYPE QUESTIONS (I)|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int x sqrt(x+2)dx is equal to

int(dx)/((2x-7)sqrt(x^(2)-7x+12)) is equal to

int_(0)^(2)sqrt((2+x)/(2-x))dx is equal to

int(dx)/((1+sqrt(x))*sqrt(x-x^(2))) is equal to

If x=(1)/(2)(sqrt(7)+(1)/(sqrt(7))) ,then , log_(27)((sqrt(x^(2)-1))/(x-sqrt(x^(2)-1))) is equal to

int _(0)^(2) sqrt((2+x)/(2-x)) dx is equal to

The value of int(dx)/(x+sqrt(a^(2)-x^(2))) , is equal to

The value of int_(0)^(a)(dx)/(x+sqrt((a^(2)-x^(2))) is equal to