Home
Class 12
MATHS
If f(x) = int (0)^(x) t sin t d t, then...

If `f(x) = int _(0)^(x) t sin t d t, ` then f'(x) is

A

`cosx+x sin x`

B

x sin x

C

x cos x

D

`sin x+x cos x`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise FILL IN THE BLANKS|15 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise TRUE/FALSE QUESTIONS|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) LONG ANSWER TYPE QUESTIONS (I)|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

If f(x) = int_(0)^(x)t sin t dt , then f'(x) is

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

For x epsilon(0,(5pi)/2) , definite f(x)=int_(0)^(x)sqrt(t) sin t dt . Then f has

If f(x)=int_(0)^(x)(sin^(4)t+cos^(4)t)dt, then f(x+pi) will be equal to

If f(x)=cos-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals

Find the derivative with respect to x of the following functions : (a) F(x) = int_(0)^(2x) (sin t)/(t) dt , (b) f(x) = int_(x)^(0) sqrt(1 + t^(4)) dt

If f(x)=cos x-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals

f(x) = int_(x)^(x^(2))(e^(t))/(t)dt , then f'(t) is equal to :