Home
Class 12
MATHS
The value of int0^(pi//2) log ((4+3 sin ...

The value of `int_0^(pi//2) log ((4+3 sin x)/(4+3 cos x)) dx` is:

A

2

B

`3/4`

C

0

D

-2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\frac{\pi}{2}} \log\left(\frac{4 + 3 \sin x}{4 + 3 \cos x}\right) \, dx \), we can use a property of definite integrals. ### Step-by-step Solution: 1. **Define the Integral**: Let \[ I = \int_0^{\frac{\pi}{2}} \log\left(\frac{4 + 3 \sin x}{4 + 3 \cos x}\right) \, dx \] 2. **Use the Property of Definite Integrals**: We can use the property that states: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx \] In our case, we will substitute \( x \) with \( \frac{\pi}{2} - x \): \[ I = \int_0^{\frac{\pi}{2}} \log\left(\frac{4 + 3 \sin\left(\frac{\pi}{2} - x\right)}{4 + 3 \cos\left(\frac{\pi}{2} - x\right)}\right) \, dx \] Since \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \) and \( \cos\left(\frac{\pi}{2} - x\right) = \sin x \), we can rewrite the integral: \[ I = \int_0^{\frac{\pi}{2}} \log\left(\frac{4 + 3 \cos x}{4 + 3 \sin x}\right) \, dx \] 3. **Add the Two Integrals**: Now we have two expressions for \( I \): \[ I = \int_0^{\frac{\pi}{2}} \log\left(\frac{4 + 3 \sin x}{4 + 3 \cos x}\right) \, dx \] \[ I = \int_0^{\frac{\pi}{2}} \log\left(\frac{4 + 3 \cos x}{4 + 3 \sin x}\right) \, dx \] Adding these two equations: \[ 2I = \int_0^{\frac{\pi}{2}} \left[ \log\left(\frac{4 + 3 \sin x}{4 + 3 \cos x}\right) + \log\left(\frac{4 + 3 \cos x}{4 + 3 \sin x}\right) \right] \, dx \] 4. **Simplify the Logarithm**: Using the property of logarithms \( \log a + \log b = \log(ab) \): \[ 2I = \int_0^{\frac{\pi}{2}} \log\left(1\right) \, dx \] Since \( \log(1) = 0 \): \[ 2I = 0 \] 5. **Solve for \( I \)**: Therefore, \[ I = 0 \] ### Final Answer: \[ \int_0^{\frac{\pi}{2}} \log\left(\frac{4 + 3 \sin x}{4 + 3 \cos x}\right) \, dx = 0 \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise FILL IN THE BLANKS|15 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise TRUE/FALSE QUESTIONS|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) LONG ANSWER TYPE QUESTIONS (I)|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1) log((4+3 sin x)/(4+3 cos x))dx , is

Evaluate: int_(0)^((pi)/(2))log((4+3sin x)/(4+3cos x))dx

Choose the correct answer The value of int_(0)^((pi)/(2))log((4+3sin x)/(4+3cos x))dx(A)2(B)(3)/(4)(C)0

int_(0)^((pi)/(2))(4-3sin x)/(4+3cos x)dx

The value of int_(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx , is

int_(0)^((pi)/(4))log((sin x+cos x)/(cos x))dx

int_(0)^(pi//2)(cos x)/((3+sin x)(4+sin x))dx=

The value of int_(0)^((pi)/(2))log[(3+5cos x)/(3+5sin x)]dx is

The value of int_(0)^(pi//2) (2log sin x-log sin 2x)dx , is