Home
Class 12
MATHS
int\ (dx)/(sin^(2)x*cos^(2)x) is equal t...

`int\ (dx)/(sin^(2)x*cos^(2)x)` is equal to

A

`tan x+ cot x+c`

B

`(tanx+cotx)^2+c`

C

`tanx-cotx+c`

D

`(tanx-cotx)^2+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise FILL IN THE BLANKS|15 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise TRUE/FALSE QUESTIONS|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) LONG ANSWER TYPE QUESTIONS (I)|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sin^(2)x.cos^(2)x)dx is equal to

What is int (dx)/(sin^(2) x cos^(2) x) equal to ? where c is the constant of integration

int(sin^(2)x - cos^(2)x)/(sin^(2)x cos^(2)x) dx is equal to

int_(0)^((pi)/2)(sin^(1000)x dx)/(sin^(1000)x+cos^(1000)x) is equal to

int (dx) / (sin ^ (2) x cos ^ (2) x) equals

The integral int((sin2x+cos^(2)x)dx)/(1+sin^(2)x(sin2x-cos^(2)x)) is equal to

int (dx)/( sin x ( 3 cos ^(2) x)) is equal to

int 1/(sin^2x cos^2x )dx is equal to: